DIC源码
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2401 lines
81 KiB

/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
* Copyright 2011-2022 Jose Luis Blanco (joseluisblancoc@gmail.com).
* All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
/** \mainpage nanoflann C++ API documentation
* nanoflann is a C++ header-only library for building KD-Trees, mostly
* optimized for 2D or 3D point clouds.
*
* nanoflann does not require compiling or installing, just an
* #include <nanoflann.hpp> in your code.
*
* See:
* - [Online README](https://github.com/jlblancoc/nanoflann)
* - [C++ API documentation](https://jlblancoc.github.io/nanoflann/)
*/
#pragma once
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath> // for abs()
#include <cstdlib> // for abs()
#include <functional> // std::reference_wrapper
#include <istream>
#include <limits> // std::numeric_limits
#include <ostream>
#include <stdexcept>
#include <unordered_set>
#include <vector>
/** Library version: 0xMmP (M=Major,m=minor,P=patch) */
#define NANOFLANN_VERSION 0x150
// Avoid conflicting declaration of min/max macros in Windows headers
#if !defined(NOMINMAX) && \
(defined(_WIN32) || defined(_WIN32_) || defined(WIN32) || defined(_WIN64))
#define NOMINMAX
#ifdef max
#undef max
#undef min
#endif
#endif
// Avoid conflicts with X11 headers
#ifdef None
#undef None
#endif
namespace nanoflann
{
/** @addtogroup nanoflann_grp nanoflann C++ library for KD-trees
* @{ */
/** the PI constant (required to avoid MSVC missing symbols) */
template <typename T>
T pi_const()
{
return static_cast<T>(3.14159265358979323846);
}
/**
* Traits if object is resizable and assignable (typically has a resize | assign
* method)
*/
template <typename T, typename = int>
struct has_resize : std::false_type
{
};
template <typename T>
struct has_resize<T, decltype((void)std::declval<T>().resize(1), 0)>
: std::true_type
{
};
template <typename T, typename = int>
struct has_assign : std::false_type
{
};
template <typename T>
struct has_assign<T, decltype((void)std::declval<T>().assign(1, 0), 0)>
: std::true_type
{
};
/**
* Free function to resize a resizable object
*/
template <typename Container>
inline typename std::enable_if<has_resize<Container>::value, void>::type resize(
Container& c, const size_t nElements)
{
c.resize(nElements);
}
/**
* Free function that has no effects on non resizable containers (e.g.
* std::array) It raises an exception if the expected size does not match
*/
template <typename Container>
inline typename std::enable_if<!has_resize<Container>::value, void>::type
resize(Container& c, const size_t nElements)
{
if (nElements != c.size())
throw std::logic_error("Try to change the size of a std::array.");
}
/**
* Free function to assign to a container
*/
template <typename Container, typename T>
inline typename std::enable_if<has_assign<Container>::value, void>::type assign(
Container& c, const size_t nElements, const T& value)
{
c.assign(nElements, value);
}
/**
* Free function to assign to a std::array
*/
template <typename Container, typename T>
inline typename std::enable_if<!has_assign<Container>::value, void>::type
assign(Container& c, const size_t nElements, const T& value)
{
for (size_t i = 0; i < nElements; i++) c[i] = value;
}
/** @addtogroup result_sets_grp Result set classes
* @{ */
template <
typename _DistanceType, typename _IndexType = size_t,
typename _CountType = size_t>
class KNNResultSet
{
public:
using DistanceType = _DistanceType;
using IndexType = _IndexType;
using CountType = _CountType;
private:
IndexType* indices;
DistanceType* dists;
CountType capacity;
CountType count;
public:
explicit KNNResultSet(CountType capacity_)
: indices(0), dists(0), capacity(capacity_), count(0)
{
}
void init(IndexType* indices_, DistanceType* dists_)
{
indices = indices_;
dists = dists_;
count = 0;
if (capacity)
dists[capacity - 1] = (std::numeric_limits<DistanceType>::max)();
}
CountType size() const { return count; }
bool full() const { return count == capacity; }
/**
* Called during search to add an element matching the criteria.
* @return true if the search should be continued, false if the results are
* sufficient
*/
bool addPoint(DistanceType dist, IndexType index)
{
CountType i;
for (i = count; i > 0; --i)
{
/** If defined and two points have the same distance, the one with
* the lowest-index will be returned first. */
#ifdef NANOFLANN_FIRST_MATCH
if ((dists[i - 1] > dist) ||
((dist == dists[i - 1]) && (indices[i - 1] > index)))
{
#else
if (dists[i - 1] > dist)
{
#endif
if (i < capacity)
{
dists[i] = dists[i - 1];
indices[i] = indices[i - 1];
}
}
else
break;
}
if (i < capacity)
{
dists[i] = dist;
indices[i] = index;
}
if (count < capacity) count++;
// tell caller that the search shall continue
return true;
}
DistanceType worstDist() const { return dists[capacity - 1]; }
};
/** operator "<" for std::sort() */
struct IndexDist_Sorter
{
/** PairType will be typically: ResultItem<IndexType,DistanceType> */
template <typename PairType>
bool operator()(const PairType& p1, const PairType& p2) const
{
return p1.second < p2.second;
}
};
/**
* Each result element in RadiusResultSet. Note that distances and indices
* are named `first` and `second` to keep backward-compatibility with the
* `std::pair<>` type used in the past. In contrast, this structure is ensured
* to be `std::is_standard_layout` so it can be used in wrappers to other
* languages.
* See: https://github.com/jlblancoc/nanoflann/issues/166
*/
template <typename IndexType = size_t, typename DistanceType = double>
struct ResultItem
{
ResultItem() = default;
ResultItem(const IndexType index, const DistanceType distance)
: first(index), second(distance)
{
}
IndexType first; //!< Index of the sample in the dataset
DistanceType second; //!< Distance from sample to query point
};
/**
* A result-set class used when performing a radius based search.
*/
template <typename _DistanceType, typename _IndexType = size_t>
class RadiusResultSet
{
public:
using DistanceType = _DistanceType;
using IndexType = _IndexType;
public:
const DistanceType radius;
std::vector<ResultItem<IndexType, DistanceType>>& m_indices_dists;
explicit RadiusResultSet(
DistanceType radius_,
std::vector<ResultItem<IndexType, DistanceType>>& indices_dists)
: radius(radius_), m_indices_dists(indices_dists)
{
init();
}
void init() { clear(); }
void clear() { m_indices_dists.clear(); }
size_t size() const { return m_indices_dists.size(); }
size_t empty() const { return m_indices_dists.empty(); }
bool full() const { return true; }
/**
* Called during search to add an element matching the criteria.
* @return true if the search should be continued, false if the results are
* sufficient
*/
bool addPoint(DistanceType dist, IndexType index)
{
if (dist < radius) m_indices_dists.emplace_back(index, dist);
return true;
}
DistanceType worstDist() const { return radius; }
/**
* Find the worst result (farthest neighbor) without copying or sorting
* Pre-conditions: size() > 0
*/
ResultItem<IndexType, DistanceType> worst_item() const
{
if (m_indices_dists.empty())
throw std::runtime_error(
"Cannot invoke RadiusResultSet::worst_item() on "
"an empty list of results.");
auto it = std::max_element(
m_indices_dists.begin(), m_indices_dists.end(), IndexDist_Sorter());
return *it;
}
};
/** @} */
/** @addtogroup loadsave_grp Load/save auxiliary functions
* @{ */
template <typename T>
void save_value(std::ostream& stream, const T& value)
{
stream.write(reinterpret_cast<const char*>(&value), sizeof(T));
}
template <typename T>
void save_value(std::ostream& stream, const std::vector<T>& value)
{
size_t size = value.size();
stream.write(reinterpret_cast<const char*>(&size), sizeof(size_t));
stream.write(reinterpret_cast<const char*>(value.data()), sizeof(T) * size);
}
template <typename T>
void load_value(std::istream& stream, T& value)
{
stream.read(reinterpret_cast<char*>(&value), sizeof(T));
}
template <typename T>
void load_value(std::istream& stream, std::vector<T>& value)
{
size_t size;
stream.read(reinterpret_cast<char*>(&size), sizeof(size_t));
value.resize(size);
stream.read(reinterpret_cast<char*>(value.data()), sizeof(T) * size);
}
/** @} */
/** @addtogroup metric_grp Metric (distance) classes
* @{ */
struct Metric
{
};
/** Manhattan distance functor (generic version, optimized for
* high-dimensionality data sets). Corresponding distance traits:
* nanoflann::metric_L1
*
* \tparam T Type of the elements (e.g. double, float, uint8_t)
* \tparam DataSource Source of the data, i.e. where the vectors are stored
* \tparam _DistanceType Type of distance variables (must be signed)
* \tparam IndexType Type of the arguments with which the data can be
* accessed (e.g. float, double, int64_t, T*)
*/
template <
class T, class DataSource, typename _DistanceType = T,
typename IndexType = uint32_t>
struct L1_Adaptor
{
using ElementType = T;
using DistanceType = _DistanceType;
const DataSource& data_source;
L1_Adaptor(const DataSource& _data_source) : data_source(_data_source) {}
DistanceType evalMetric(
const T* a, const IndexType b_idx, size_t size,
DistanceType worst_dist = -1) const
{
DistanceType result = DistanceType();
const T* last = a + size;
const T* lastgroup = last - 3;
size_t d = 0;
/* Process 4 items with each loop for efficiency. */
while (a < lastgroup)
{
const DistanceType diff0 =
std::abs(a[0] - data_source.kdtree_get_pt(b_idx, d++));
const DistanceType diff1 =
std::abs(a[1] - data_source.kdtree_get_pt(b_idx, d++));
const DistanceType diff2 =
std::abs(a[2] - data_source.kdtree_get_pt(b_idx, d++));
const DistanceType diff3 =
std::abs(a[3] - data_source.kdtree_get_pt(b_idx, d++));
result += diff0 + diff1 + diff2 + diff3;
a += 4;
if ((worst_dist > 0) && (result > worst_dist)) { return result; }
}
/* Process last 0-3 components. Not needed for standard vector lengths.
*/
while (a < last)
{ result += std::abs(*a++ - data_source.kdtree_get_pt(b_idx, d++)); }
return result;
}
template <typename U, typename V>
DistanceType accum_dist(const U a, const V b, const size_t) const
{
return std::abs(a - b);
}
};
/** **Squared** Euclidean distance functor (generic version, optimized for
* high-dimensionality data sets). Corresponding distance traits:
* nanoflann::metric_L2
*
* \tparam T Type of the elements (e.g. double, float, uint8_t)
* \tparam DataSource Source of the data, i.e. where the vectors are stored
* \tparam _DistanceType Type of distance variables (must be signed)
* \tparam IndexType Type of the arguments with which the data can be
* accessed (e.g. float, double, int64_t, T*)
*/
template <
class T, class DataSource, typename _DistanceType = T,
typename IndexType = uint32_t>
struct L2_Adaptor
{
using ElementType = T;
using DistanceType = _DistanceType;
const DataSource& data_source;
L2_Adaptor(const DataSource& _data_source) : data_source(_data_source) {}
DistanceType evalMetric(
const T* a, const IndexType b_idx, size_t size,
DistanceType worst_dist = -1) const
{
DistanceType result = DistanceType();
const T* last = a + size;
const T* lastgroup = last - 3;
size_t d = 0;
/* Process 4 items with each loop for efficiency. */
while (a < lastgroup)
{
const DistanceType diff0 =
a[0] - data_source.kdtree_get_pt(b_idx, d++);
const DistanceType diff1 =
a[1] - data_source.kdtree_get_pt(b_idx, d++);
const DistanceType diff2 =
a[2] - data_source.kdtree_get_pt(b_idx, d++);
const DistanceType diff3 =
a[3] - data_source.kdtree_get_pt(b_idx, d++);
result +=
diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
a += 4;
if ((worst_dist > 0) && (result > worst_dist)) { return result; }
}
/* Process last 0-3 components. Not needed for standard vector lengths.
*/
while (a < last)
{
const DistanceType diff0 =
*a++ - data_source.kdtree_get_pt(b_idx, d++);
result += diff0 * diff0;
}
return result;
}
template <typename U, typename V>
DistanceType accum_dist(const U a, const V b, const size_t) const
{
return (a - b) * (a - b);
}
};
/** **Squared** Euclidean (L2) distance functor (suitable for low-dimensionality
* datasets, like 2D or 3D point clouds) Corresponding distance traits:
* nanoflann::metric_L2_Simple
*
* \tparam T Type of the elements (e.g. double, float, uint8_t)
* \tparam DataSource Source of the data, i.e. where the vectors are stored
* \tparam _DistanceType Type of distance variables (must be signed)
* \tparam IndexType Type of the arguments with which the data can be
* accessed (e.g. float, double, int64_t, T*)
*/
template <
class T, class DataSource, typename _DistanceType = T,
typename IndexType = uint32_t>
struct L2_Simple_Adaptor
{
using ElementType = T;
using DistanceType = _DistanceType;
const DataSource& data_source;
L2_Simple_Adaptor(const DataSource& _data_source)
: data_source(_data_source)
{
}
DistanceType evalMetric(
const T* a, const IndexType b_idx, size_t size) const
{
DistanceType result = DistanceType();
for (size_t i = 0; i < size; ++i)
{
const DistanceType diff =
a[i] - data_source.kdtree_get_pt(b_idx, i);
result += diff * diff;
}
return result;
}
template <typename U, typename V>
DistanceType accum_dist(const U a, const V b, const size_t) const
{
return (a - b) * (a - b);
}
};
/** SO2 distance functor
* Corresponding distance traits: nanoflann::metric_SO2
*
* \tparam T Type of the elements (e.g. double, float, uint8_t)
* \tparam DataSource Source of the data, i.e. where the vectors are stored
* \tparam _DistanceType Type of distance variables (must be signed) (e.g.
* float, double) orientation is constrained to be in [-pi, pi]
* \tparam IndexType Type of the arguments with which the data can be
* accessed (e.g. float, double, int64_t, T*)
*/
template <
class T, class DataSource, typename _DistanceType = T,
typename IndexType = uint32_t>
struct SO2_Adaptor
{
using ElementType = T;
using DistanceType = _DistanceType;
const DataSource& data_source;
SO2_Adaptor(const DataSource& _data_source) : data_source(_data_source) {}
DistanceType evalMetric(
const T* a, const IndexType b_idx, size_t size) const
{
return accum_dist(
a[size - 1], data_source.kdtree_get_pt(b_idx, size - 1), size - 1);
}
/** Note: this assumes that input angles are already in the range [-pi,pi]
*/
template <typename U, typename V>
DistanceType accum_dist(const U a, const V b, const size_t) const
{
DistanceType result = DistanceType();
DistanceType PI = pi_const<DistanceType>();
result = b - a;
if (result > PI)
result -= 2 * PI;
else if (result < -PI)
result += 2 * PI;
return result;
}
};
/** SO3 distance functor (Uses L2_Simple)
* Corresponding distance traits: nanoflann::metric_SO3
*
* \tparam T Type of the elements (e.g. double, float, uint8_t)
* \tparam DataSource Source of the data, i.e. where the vectors are stored
* \tparam _DistanceType Type of distance variables (must be signed) (e.g.
* float, double)
* \tparam IndexType Type of the arguments with which the data can be
* accessed (e.g. float, double, int64_t, T*)
*/
template <
class T, class DataSource, typename _DistanceType = T,
typename IndexType = uint32_t>
struct SO3_Adaptor
{
using ElementType = T;
using DistanceType = _DistanceType;
L2_Simple_Adaptor<T, DataSource, DistanceType, IndexType>
distance_L2_Simple;
SO3_Adaptor(const DataSource& _data_source)
: distance_L2_Simple(_data_source)
{
}
DistanceType evalMetric(
const T* a, const IndexType b_idx, size_t size) const
{
return distance_L2_Simple.evalMetric(a, b_idx, size);
}
template <typename U, typename V>
DistanceType accum_dist(const U a, const V b, const size_t idx) const
{
return distance_L2_Simple.accum_dist(a, b, idx);
}
};
/** Metaprogramming helper traits class for the L1 (Manhattan) metric */
struct metric_L1 : public Metric
{
template <class T, class DataSource, typename IndexType = uint32_t>
struct traits
{
using distance_t = L1_Adaptor<T, DataSource, T, IndexType>;
};
};
/** Metaprogramming helper traits class for the L2 (Euclidean) **squared**
* distance metric */
struct metric_L2 : public Metric
{
template <class T, class DataSource, typename IndexType = uint32_t>
struct traits
{
using distance_t = L2_Adaptor<T, DataSource, T, IndexType>;
};
};
/** Metaprogramming helper traits class for the L2_simple (Euclidean)
* **squared** distance metric */
struct metric_L2_Simple : public Metric
{
template <class T, class DataSource, typename IndexType = uint32_t>
struct traits
{
using distance_t = L2_Simple_Adaptor<T, DataSource, T, IndexType>;
};
};
/** Metaprogramming helper traits class for the SO3_InnerProdQuat metric */
struct metric_SO2 : public Metric
{
template <class T, class DataSource, typename IndexType = uint32_t>
struct traits
{
using distance_t = SO2_Adaptor<T, DataSource, T, IndexType>;
};
};
/** Metaprogramming helper traits class for the SO3_InnerProdQuat metric */
struct metric_SO3 : public Metric
{
template <class T, class DataSource, typename IndexType = uint32_t>
struct traits
{
using distance_t = SO3_Adaptor<T, DataSource, T, IndexType>;
};
};
/** @} */
/** @addtogroup param_grp Parameter structs
* @{ */
enum class KDTreeSingleIndexAdaptorFlags
{
None = 0,
SkipInitialBuildIndex = 1
};
inline std::underlying_type<KDTreeSingleIndexAdaptorFlags>::type operator&(
KDTreeSingleIndexAdaptorFlags lhs, KDTreeSingleIndexAdaptorFlags rhs)
{
using underlying =
typename std::underlying_type<KDTreeSingleIndexAdaptorFlags>::type;
return static_cast<underlying>(lhs) & static_cast<underlying>(rhs);
}
/** Parameters (see README.md) */
struct KDTreeSingleIndexAdaptorParams
{
KDTreeSingleIndexAdaptorParams(
size_t _leaf_max_size = 10, KDTreeSingleIndexAdaptorFlags _flags =
KDTreeSingleIndexAdaptorFlags::None)
: leaf_max_size(_leaf_max_size), flags(_flags)
{
}
size_t leaf_max_size;
KDTreeSingleIndexAdaptorFlags flags;
};
/** Search options for KDTreeSingleIndexAdaptor::findNeighbors() */
struct SearchParameters
{
SearchParameters(float eps_ = 0, bool sorted_ = true)
: eps(eps_), sorted(sorted_)
{
}
float eps; //!< search for eps-approximate neighbours (default: 0)
bool sorted; //!< only for radius search, require neighbours sorted by
//!< distance (default: true)
};
/** @} */
/** @addtogroup memalloc_grp Memory allocation
* @{ */
/**
* Pooled storage allocator
*
* The following routines allow for the efficient allocation of storage in
* small chunks from a specified pool. Rather than allowing each structure
* to be freed individually, an entire pool of storage is freed at once.
* This method has two advantages over just using malloc() and free(). First,
* it is far more efficient for allocating small objects, as there is
* no overhead for remembering all the information needed to free each
* object or consolidating fragmented memory. Second, the decision about
* how long to keep an object is made at the time of allocation, and there
* is no need to track down all the objects to free them.
*
*/
class PooledAllocator
{
static constexpr size_t WORDSIZE = 16;
static constexpr size_t BLOCKSIZE = 8192;
/* We maintain memory alignment to word boundaries by requiring that all
allocations be in multiples of the machine wordsize. */
/* Size of machine word in bytes. Must be power of 2. */
/* Minimum number of bytes requested at a time from the system. Must be
* multiple of WORDSIZE. */
using Offset = uint32_t;
using Size = uint32_t;
using Dimension = int32_t;
Size remaining_ = 0; //!< Number of bytes left in current block of storage
void* base_ = nullptr; //!< Pointer to base of current block of storage
void* loc_ = nullptr; //!< Current location in block to next allocate
void internal_init()
{
remaining_ = 0;
base_ = nullptr;
usedMemory = 0;
wastedMemory = 0;
}
public:
Size usedMemory = 0;
Size wastedMemory = 0;
/**
Default constructor. Initializes a new pool.
*/
PooledAllocator() { internal_init(); }
/**
* Destructor. Frees all the memory allocated in this pool.
*/
~PooledAllocator() { free_all(); }
/** Frees all allocated memory chunks */
void free_all()
{
while (base_ != nullptr)
{
// Get pointer to prev block
void* prev = *(static_cast<void**>(base_));
::free(base_);
base_ = prev;
}
internal_init();
}
/**
* Returns a pointer to a piece of new memory of the given size in bytes
* allocated from the pool.
*/
void* malloc(const size_t req_size)
{
/* Round size up to a multiple of wordsize. The following expression
only works for WORDSIZE that is a power of 2, by masking last bits
of incremented size to zero.
*/
const Size size = (req_size + (WORDSIZE - 1)) & ~(WORDSIZE - 1);
/* Check whether a new block must be allocated. Note that the first
word of a block is reserved for a pointer to the previous block.
*/
if (size > remaining_)
{
wastedMemory += remaining_;
/* Allocate new storage. */
const Size blocksize =
(size + sizeof(void*) + (WORDSIZE - 1) > BLOCKSIZE)
? size + sizeof(void*) + (WORDSIZE - 1)
: BLOCKSIZE;
// use the standard C malloc to allocate memory
void* m = ::malloc(blocksize);
if (!m)
{
fprintf(stderr, "Failed to allocate memory.\n");
throw std::bad_alloc();
}
/* Fill first word of new block with pointer to previous block. */
static_cast<void**>(m)[0] = base_;
base_ = m;
Size shift = 0;
// int size_t = (WORDSIZE - ( (((size_t)m) + sizeof(void*)) &
// (WORDSIZE-1))) & (WORDSIZE-1);
remaining_ = blocksize - sizeof(void*) - shift;
loc_ = (static_cast<char*>(m) + sizeof(void*) + shift);
}
void* rloc = loc_;
loc_ = static_cast<char*>(loc_) + size;
remaining_ -= size;
usedMemory += size;
return rloc;
}
/**
* Allocates (using this pool) a generic type T.
*
* Params:
* count = number of instances to allocate.
* Returns: pointer (of type T*) to memory buffer
*/
template <typename T>
T* allocate(const size_t count = 1)
{
T* mem = static_cast<T*>(this->malloc(sizeof(T) * count));
return mem;
}
};
/** @} */
/** @addtogroup nanoflann_metaprog_grp Auxiliary metaprogramming stuff
* @{ */
/** Used to declare fixed-size arrays when DIM>0, dynamically-allocated vectors
* when DIM=-1. Fixed size version for a generic DIM:
*/
template <int32_t DIM, typename T>
struct array_or_vector
{
using type = std::array<T, DIM>;
};
/** Dynamic size version */
template <typename T>
struct array_or_vector<-1, T>
{
using type = std::vector<T>;
};
/** @} */
/** kd-tree base-class
*
* Contains the member functions common to the classes KDTreeSingleIndexAdaptor
* and KDTreeSingleIndexDynamicAdaptor_.
*
* \tparam Derived The name of the class which inherits this class.
* \tparam DatasetAdaptor The user-provided adaptor, which must be ensured to
* have a lifetime equal or longer than the instance of this class.
* \tparam Distance The distance metric to use, these are all classes derived
* from nanoflann::Metric
* \tparam DIM Dimensionality of data points (e.g. 3 for 3D points)
* \tparam IndexType Type of the arguments with which the data can be
* accessed (e.g. float, double, int64_t, T*)
*/
template <
class Derived, typename Distance, class DatasetAdaptor, int32_t DIM = -1,
typename IndexType = uint32_t>
class KDTreeBaseClass
{
public:
/** Frees the previously-built index. Automatically called within
* buildIndex(). */
void freeIndex(Derived& obj)
{
obj.pool_.free_all();
obj.root_node_ = nullptr;
obj.size_at_index_build_ = 0;
}
using ElementType = typename Distance::ElementType;
using DistanceType = typename Distance::DistanceType;
/**
* Array of indices to vectors in the dataset_.
*/
std::vector<IndexType> vAcc_;
using Offset = typename decltype(vAcc_)::size_type;
using Size = typename decltype(vAcc_)::size_type;
using Dimension = int32_t;
/*---------------------------
* Internal Data Structures
* --------------------------*/
struct Node
{
/** Union used because a node can be either a LEAF node or a non-leaf
* node, so both data fields are never used simultaneously */
union
{
struct leaf
{
Offset left, right; //!< Indices of points in leaf node
} lr;
struct nonleaf
{
Dimension divfeat; //!< Dimension used for subdivision.
/// The values used for subdivision.
DistanceType divlow, divhigh;
} sub;
} node_type;
/** Child nodes (both=nullptr mean its a leaf node) */
Node *child1 = nullptr, *child2 = nullptr;
};
using NodePtr = Node*;
using NodeConstPtr = const Node*;
struct Interval
{
ElementType low, high;
};
NodePtr root_node_ = nullptr;
Size leaf_max_size_ = 0;
/// Number of current points in the dataset
Size size_ = 0;
/// Number of points in the dataset when the index was built
Size size_at_index_build_ = 0;
Dimension dim_ = 0; //!< Dimensionality of each data point
/** Define "BoundingBox" as a fixed-size or variable-size container
* depending on "DIM" */
using BoundingBox = typename array_or_vector<DIM, Interval>::type;
/** Define "distance_vector_t" as a fixed-size or variable-size container
* depending on "DIM" */
using distance_vector_t = typename array_or_vector<DIM, DistanceType>::type;
/** The KD-tree used to find neighbours */
BoundingBox root_bbox_;
/**
* Pooled memory allocator.
*
* Using a pooled memory allocator is more efficient
* than allocating memory directly when there is a large
* number small of memory allocations.
*/
PooledAllocator pool_;
/** Returns number of points in dataset */
Size size(const Derived& obj) const { return obj.size_; }
/** Returns the length of each point in the dataset */
Size veclen(const Derived& obj) { return DIM > 0 ? DIM : obj.dim; }
/// Helper accessor to the dataset points:
ElementType dataset_get(
const Derived& obj, IndexType element, Dimension component) const
{
return obj.dataset_.kdtree_get_pt(element, component);
}
/**
* Computes the inde memory usage
* Returns: memory used by the index
*/
Size usedMemory(Derived& obj)
{
return obj.pool_.usedMemory + obj.pool_.wastedMemory +
obj.dataset_.kdtree_get_point_count() *
sizeof(IndexType); // pool memory and vind array memory
}
void computeMinMax(
const Derived& obj, Offset ind, Size count, Dimension element,
ElementType& min_elem, ElementType& max_elem)
{
min_elem = dataset_get(obj, vAcc_[ind], element);
max_elem = min_elem;
for (Offset i = 1; i < count; ++i)
{
ElementType val = dataset_get(obj, vAcc_[ind + i], element);
if (val < min_elem) min_elem = val;
if (val > max_elem) max_elem = val;
}
}
/**
* Create a tree node that subdivides the list of vecs from vind[first]
* to vind[last]. The routine is called recursively on each sublist.
*
* @param left index of the first vector
* @param right index of the last vector
*/
NodePtr divideTree(
Derived& obj, const Offset left, const Offset right, BoundingBox& bbox)
{
NodePtr node = obj.pool_.template allocate<Node>(); // allocate memory
const auto dims = (DIM > 0 ? DIM : obj.dim_);
/* If too few exemplars remain, then make this a leaf node. */
if ((right - left) <= static_cast<Offset>(obj.leaf_max_size_))
{
node->child1 = node->child2 = nullptr; /* Mark as leaf node. */
node->node_type.lr.left = left;
node->node_type.lr.right = right;
// compute bounding-box of leaf points
for (Dimension i = 0; i < dims; ++i)
{
bbox[i].low = dataset_get(obj, obj.vAcc_[left], i);
bbox[i].high = dataset_get(obj, obj.vAcc_[left], i);
}
for (Offset k = left + 1; k < right; ++k)
{
for (Dimension i = 0; i < dims; ++i)
{
const auto val = dataset_get(obj, obj.vAcc_[k], i);
if (bbox[i].low > val) bbox[i].low = val;
if (bbox[i].high < val) bbox[i].high = val;
}
}
}
else
{
Offset idx;
Dimension cutfeat;
DistanceType cutval;
middleSplit_(obj, left, right - left, idx, cutfeat, cutval, bbox);
node->node_type.sub.divfeat = cutfeat;
BoundingBox left_bbox(bbox);
left_bbox[cutfeat].high = cutval;
node->child1 = this->divideTree(obj, left, left + idx, left_bbox);
BoundingBox right_bbox(bbox);
right_bbox[cutfeat].low = cutval;
node->child2 = this->divideTree(obj, left + idx, right, right_bbox);
node->node_type.sub.divlow = left_bbox[cutfeat].high;
node->node_type.sub.divhigh = right_bbox[cutfeat].low;
for (Dimension i = 0; i < dims; ++i)
{
bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low);
bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high);
}
}
return node;
}
void middleSplit_(
const Derived& obj, const Offset ind, const Size count, Offset& index,
Dimension& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
{
const auto dims = (DIM > 0 ? DIM : obj.dim_);
const auto EPS = static_cast<DistanceType>(0.00001);
ElementType max_span = bbox[0].high - bbox[0].low;
for (Dimension i = 1; i < dims; ++i)
{
ElementType span = bbox[i].high - bbox[i].low;
if (span > max_span) { max_span = span; }
}
ElementType max_spread = -1;
cutfeat = 0;
for (Dimension i = 0; i < dims; ++i)
{
ElementType span = bbox[i].high - bbox[i].low;
if (span > (1 - EPS) * max_span)
{
ElementType min_elem, max_elem;
computeMinMax(obj, ind, count, i, min_elem, max_elem);
ElementType spread = max_elem - min_elem;
if (spread > max_spread)
{
cutfeat = i;
max_spread = spread;
}
}
}
// split in the middle
DistanceType split_val = (bbox[cutfeat].low + bbox[cutfeat].high) / 2;
ElementType min_elem, max_elem;
computeMinMax(obj, ind, count, cutfeat, min_elem, max_elem);
if (split_val < min_elem)
cutval = min_elem;
else if (split_val > max_elem)
cutval = max_elem;
else
cutval = split_val;
Offset lim1, lim2;
planeSplit(obj, ind, count, cutfeat, cutval, lim1, lim2);
if (lim1 > count / 2)
index = lim1;
else if (lim2 < count / 2)
index = lim2;
else
index = count / 2;
}
/**
* Subdivide the list of points by a plane perpendicular on the axis
* corresponding to the 'cutfeat' dimension at 'cutval' position.
*
* On return:
* dataset[ind[0..lim1-1]][cutfeat]<cutval
* dataset[ind[lim1..lim2-1]][cutfeat]==cutval
* dataset[ind[lim2..count]][cutfeat]>cutval
*/
void planeSplit(
const Derived& obj, const Offset ind, const Size count,
const Dimension cutfeat, const DistanceType& cutval, Offset& lim1,
Offset& lim2)
{
/* Move vector indices for left subtree to front of list. */
Offset left = 0;
Offset right = count - 1;
for (;;)
{
while (left <= right &&
dataset_get(obj, vAcc_[ind + left], cutfeat) < cutval)
++left;
while (right && left <= right &&
dataset_get(obj, vAcc_[ind + right], cutfeat) >= cutval)
--right;
if (left > right || !right)
break; // "!right" was added to support unsigned Index types
std::swap(vAcc_[ind + left], vAcc_[ind + right]);
++left;
--right;
}
/* If either list is empty, it means that all remaining features
* are identical. Split in the middle to maintain a balanced tree.
*/
lim1 = left;
right = count - 1;
for (;;)
{
while (left <= right &&
dataset_get(obj, vAcc_[ind + left], cutfeat) <= cutval)
++left;
while (right && left <= right &&
dataset_get(obj, vAcc_[ind + right], cutfeat) > cutval)
--right;
if (left > right || !right)
break; // "!right" was added to support unsigned Index types
std::swap(vAcc_[ind + left], vAcc_[ind + right]);
++left;
--right;
}
lim2 = left;
}
DistanceType computeInitialDistances(
const Derived& obj, const ElementType* vec,
distance_vector_t& dists) const
{
assert(vec);
DistanceType distsq = DistanceType();
for (Dimension i = 0; i < (DIM > 0 ? DIM : obj.dim_); ++i)
{
if (vec[i] < obj.root_bbox_[i].low)
{
dists[i] =
obj.distance_.accum_dist(vec[i], obj.root_bbox_[i].low, i);
distsq += dists[i];
}
if (vec[i] > obj.root_bbox_[i].high)
{
dists[i] =
obj.distance_.accum_dist(vec[i], obj.root_bbox_[i].high, i);
distsq += dists[i];
}
}
return distsq;
}
static void save_tree(
const Derived& obj, std::ostream& stream, const NodeConstPtr tree)
{
save_value(stream, *tree);
if (tree->child1 != nullptr) { save_tree(obj, stream, tree->child1); }
if (tree->child2 != nullptr) { save_tree(obj, stream, tree->child2); }
}
static void load_tree(Derived& obj, std::istream& stream, NodePtr& tree)
{
tree = obj.pool_.template allocate<Node>();
load_value(stream, *tree);
if (tree->child1 != nullptr) { load_tree(obj, stream, tree->child1); }
if (tree->child2 != nullptr) { load_tree(obj, stream, tree->child2); }
}
/** Stores the index in a binary file.
* IMPORTANT NOTE: The set of data points is NOT stored in the file, so
* when loading the index object it must be constructed associated to the
* same source of data points used while building it. See the example:
* examples/saveload_example.cpp \sa loadIndex */
void saveIndex(const Derived& obj, std::ostream& stream) const
{
save_value(stream, obj.size_);
save_value(stream, obj.dim_);
save_value(stream, obj.root_bbox_);
save_value(stream, obj.leaf_max_size_);
save_value(stream, obj.vAcc_);
save_tree(obj, stream, obj.root_node_);
}
/** Loads a previous index from a binary file.
* IMPORTANT NOTE: The set of data points is NOT stored in the file, so
* the index object must be constructed associated to the same source of
* data points used while building the index. See the example:
* examples/saveload_example.cpp \sa loadIndex */
void loadIndex(Derived& obj, std::istream& stream)
{
load_value(stream, obj.size_);
load_value(stream, obj.dim_);
load_value(stream, obj.root_bbox_);
load_value(stream, obj.leaf_max_size_);
load_value(stream, obj.vAcc_);
load_tree(obj, stream, obj.root_node_);
}
};
/** @addtogroup kdtrees_grp KD-tree classes and adaptors
* @{ */
/** kd-tree static index
*
* Contains the k-d trees and other information for indexing a set of points
* for nearest-neighbor matching.
*
* The class "DatasetAdaptor" must provide the following interface (can be
* non-virtual, inlined methods):
*
* \code
* // Must return the number of data poins
* size_t kdtree_get_point_count() const { ... }
*
*
* // Must return the dim'th component of the idx'th point in the class:
* T kdtree_get_pt(const size_t idx, const size_t dim) const { ... }
*
* // Optional bounding-box computation: return false to default to a standard
* bbox computation loop.
* // Return true if the BBOX was already computed by the class and returned
* in "bb" so it can be avoided to redo it again.
* // Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3
* for point clouds) template <class BBOX> bool kdtree_get_bbox(BBOX &bb) const
* {
* bb[0].low = ...; bb[0].high = ...; // 0th dimension limits
* bb[1].low = ...; bb[1].high = ...; // 1st dimension limits
* ...
* return true;
* }
*
* \endcode
*
* \tparam DatasetAdaptor The user-provided adaptor, which must be ensured to
* have a lifetime equal or longer than the instance of this class.
* \tparam Distance The distance metric to use: nanoflann::metric_L1,
* nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. \tparam DIM
* Dimensionality of data points (e.g. 3 for 3D points) \tparam IndexType Will
* be typically size_t or int
*/
template <
typename Distance, class DatasetAdaptor, int32_t DIM = -1,
typename IndexType = uint32_t>
class KDTreeSingleIndexAdaptor
: public KDTreeBaseClass<
KDTreeSingleIndexAdaptor<Distance, DatasetAdaptor, DIM, IndexType>,
Distance, DatasetAdaptor, DIM, IndexType>
{
public:
/** Deleted copy constructor*/
explicit KDTreeSingleIndexAdaptor(
const KDTreeSingleIndexAdaptor<
Distance, DatasetAdaptor, DIM, IndexType>&) = delete;
/** The data source used by this index */
const DatasetAdaptor& dataset_;
const KDTreeSingleIndexAdaptorParams indexParams;
Distance distance_;
using Base = typename nanoflann::KDTreeBaseClass<
nanoflann::KDTreeSingleIndexAdaptor<
Distance, DatasetAdaptor, DIM, IndexType>,
Distance, DatasetAdaptor, DIM, IndexType>;
using Offset = typename Base::Offset;
using Size = typename Base::Size;
using Dimension = typename Base::Dimension;
using ElementType = typename Base::ElementType;
using DistanceType = typename Base::DistanceType;
using Node = typename Base::Node;
using NodePtr = Node*;
using Interval = typename Base::Interval;
/** Define "BoundingBox" as a fixed-size or variable-size container
* depending on "DIM" */
using BoundingBox = typename Base::BoundingBox;
/** Define "distance_vector_t" as a fixed-size or variable-size container
* depending on "DIM" */
using distance_vector_t = typename Base::distance_vector_t;
/**
* KDTree constructor
*
* Refer to docs in README.md or online in
* https://github.com/jlblancoc/nanoflann
*
* The KD-Tree point dimension (the length of each point in the datase, e.g.
* 3 for 3D points) is determined by means of:
* - The \a DIM template parameter if >0 (highest priority)
* - Otherwise, the \a dimensionality parameter of this constructor.
*
* @param inputData Dataset with the input features. Its lifetime must be
* equal or longer than that of the instance of this class.
* @param params Basically, the maximum leaf node size
*
* Note that there is a variable number of optional additional parameters
* which will be forwarded to the metric class constructor. Refer to example
* `examples/pointcloud_custom_metric.cpp` for a use case.
*
*/
template <class... Args>
explicit KDTreeSingleIndexAdaptor(
const Dimension dimensionality, const DatasetAdaptor& inputData,
const KDTreeSingleIndexAdaptorParams& params, Args&&... args)
: dataset_(inputData),
indexParams(params),
distance_(inputData, std::forward<Args>(args)...)
{
init(dimensionality, params);
}
explicit KDTreeSingleIndexAdaptor(
const Dimension dimensionality, const DatasetAdaptor& inputData,
const KDTreeSingleIndexAdaptorParams& params = {})
: dataset_(inputData), indexParams(params), distance_(inputData)
{
init(dimensionality, params);
}
private:
void init(
const Dimension dimensionality,
const KDTreeSingleIndexAdaptorParams& params)
{
Base::size_ = dataset_.kdtree_get_point_count();
Base::size_at_index_build_ = Base::size_;
Base::dim_ = dimensionality;
if (DIM > 0) Base::dim_ = DIM;
Base::leaf_max_size_ = params.leaf_max_size;
if (!(params.flags &
KDTreeSingleIndexAdaptorFlags::SkipInitialBuildIndex))
{
// Build KD-tree:
buildIndex();
}
}
public:
/**
* Builds the index
*/
void buildIndex()
{
Base::size_ = dataset_.kdtree_get_point_count();
Base::size_at_index_build_ = Base::size_;
init_vind();
this->freeIndex(*this);
Base::size_at_index_build_ = Base::size_;
if (Base::size_ == 0) return;
computeBoundingBox(Base::root_bbox_);
// construct the tree
Base::root_node_ =
this->divideTree(*this, 0, Base::size_, Base::root_bbox_);
}
/** \name Query methods
* @{ */
/**
* Find set of nearest neighbors to vec[0:dim-1]. Their indices are stored
* inside the result object.
*
* Params:
* result = the result object in which the indices of the
* nearest-neighbors are stored vec = the vector for which to search the
* nearest neighbors
*
* \tparam RESULTSET Should be any ResultSet<DistanceType>
* \return True if the requested neighbors could be found.
* \sa knnSearch, radiusSearch
*/
template <typename RESULTSET>
bool findNeighbors(
RESULTSET& result, const ElementType* vec,
const SearchParameters& searchParams = {}) const
{
assert(vec);
if (this->size(*this) == 0) return false;
if (!Base::root_node_)
throw std::runtime_error(
"[nanoflann] findNeighbors() called before building the "
"index.");
float epsError = 1 + searchParams.eps;
// fixed or variable-sized container (depending on DIM)
distance_vector_t dists;
// Fill it with zeros.
auto zero = static_cast<decltype(result.worstDist())>(0);
assign(dists, (DIM > 0 ? DIM : Base::dim_), zero);
DistanceType distsq = this->computeInitialDistances(*this, vec, dists);
searchLevel(result, vec, Base::root_node_, distsq, dists, epsError);
return result.full();
}
/**
* Find the "num_closest" nearest neighbors to the \a query_point[0:dim-1].
* Their indices and distances are stored in the provided pointers to
* array/vector.
*
* \sa radiusSearch, findNeighbors
* \return Number `N` of valid points in the result set.
*
* \note Only the first `N` entries in `out_indices` and `out_distances_sq`
* will be valid. Return is less than `num_closest` only if the
* number of elements in the tree is less than `num_closest`.
*/
Size knnSearch(
const ElementType* query_point, const Size num_closest,
IndexType* out_indices, DistanceType* out_distances_sq) const
{
nanoflann::KNNResultSet<DistanceType, IndexType> resultSet(num_closest);
resultSet.init(out_indices, out_distances_sq);
findNeighbors(resultSet, query_point);
return resultSet.size();
}
/**
* Find all the neighbors to \a query_point[0:dim-1] within a maximum
* radius. The output is given as a vector of pairs, of which the first
* element is a point index and the second the corresponding distance.
* Previous contents of \a IndicesDists are cleared.
*
* If searchParams.sorted==true, the output list is sorted by ascending
* distances.
*
* For a better performance, it is advisable to do a .reserve() on the
* vector if you have any wild guess about the number of expected matches.
*
* \sa knnSearch, findNeighbors, radiusSearchCustomCallback
* \return The number of points within the given radius (i.e. indices.size()
* or dists.size() )
*/
Size radiusSearch(
const ElementType* query_point, const DistanceType& radius,
std::vector<ResultItem<IndexType, DistanceType>>& IndicesDists,
const SearchParameters& searchParams = {}) const
{
RadiusResultSet<DistanceType, IndexType> resultSet(
radius, IndicesDists);
const Size nFound =
radiusSearchCustomCallback(query_point, resultSet, searchParams);
if (searchParams.sorted)
std::sort(
IndicesDists.begin(), IndicesDists.end(), IndexDist_Sorter());
return nFound;
}
/**
* Just like radiusSearch() but with a custom callback class for each point
* found in the radius of the query. See the source of RadiusResultSet<> as
* a start point for your own classes. \sa radiusSearch
*/
template <class SEARCH_CALLBACK>
Size radiusSearchCustomCallback(
const ElementType* query_point, SEARCH_CALLBACK& resultSet,
const SearchParameters& searchParams = {}) const
{
findNeighbors(resultSet, query_point, searchParams);
return resultSet.size();
}
/** @} */
public:
/** Make sure the auxiliary list \a vind has the same size than the current
* dataset, and re-generate if size has changed. */
void init_vind()
{
// Create a permutable array of indices to the input vectors.
Base::size_ = dataset_.kdtree_get_point_count();
if (Base::vAcc_.size() != Base::size_) Base::vAcc_.resize(Base::size_);
for (Size i = 0; i < Base::size_; i++) Base::vAcc_[i] = i;
}
void computeBoundingBox(BoundingBox& bbox)
{
const auto dims = (DIM > 0 ? DIM : Base::dim_);
resize(bbox, dims);
if (dataset_.kdtree_get_bbox(bbox))
{
// Done! It was implemented in derived class
}
else
{
const Size N = dataset_.kdtree_get_point_count();
if (!N)
throw std::runtime_error(
"[nanoflann] computeBoundingBox() called but "
"no data points found.");
for (Dimension i = 0; i < dims; ++i)
{
bbox[i].low = bbox[i].high =
this->dataset_get(*this, Base::vAcc_[0], i);
}
for (Offset k = 1; k < N; ++k)
{
for (Dimension i = 0; i < dims; ++i)
{
const auto val =
this->dataset_get(*this, Base::vAcc_[k], i);
if (val < bbox[i].low) bbox[i].low = val;
if (val > bbox[i].high) bbox[i].high = val;
}
}
}
}
/**
* Performs an exact search in the tree starting from a node.
* \tparam RESULTSET Should be any ResultSet<DistanceType>
* \return true if the search should be continued, false if the results are
* sufficient
*/
template <class RESULTSET>
bool searchLevel(
RESULTSET& result_set, const ElementType* vec, const NodePtr node,
DistanceType mindistsq, distance_vector_t& dists,
const float epsError) const
{
/* If this is a leaf node, then do check and return. */
if ((node->child1 == nullptr) && (node->child2 == nullptr))
{
DistanceType worst_dist = result_set.worstDist();
for (Offset i = node->node_type.lr.left;
i < node->node_type.lr.right; ++i)
{
const IndexType accessor = Base::vAcc_[i]; // reorder... : i;
DistanceType dist = distance_.evalMetric(
vec, accessor, (DIM > 0 ? DIM : Base::dim_));
if (dist < worst_dist)
{
if (!result_set.addPoint(dist, Base::vAcc_[i]))
{
// the resultset doesn't want to receive any more
// points, we're done searching!
return false;
}
}
}
return true;
}
/* Which child branch should be taken first? */
Dimension idx = node->node_type.sub.divfeat;
ElementType val = vec[idx];
DistanceType diff1 = val - node->node_type.sub.divlow;
DistanceType diff2 = val - node->node_type.sub.divhigh;
NodePtr bestChild;
NodePtr otherChild;
DistanceType cut_dist;
if ((diff1 + diff2) < 0)
{
bestChild = node->child1;
otherChild = node->child2;
cut_dist =
distance_.accum_dist(val, node->node_type.sub.divhigh, idx);
}
else
{
bestChild = node->child2;
otherChild = node->child1;
cut_dist =
distance_.accum_dist(val, node->node_type.sub.divlow, idx);
}
/* Call recursively to search next level down. */
if (!searchLevel(
result_set, vec, bestChild, mindistsq, dists, epsError))
{
// the resultset doesn't want to receive any more points, we're done
// searching!
return false;
}
DistanceType dst = dists[idx];
mindistsq = mindistsq + cut_dist - dst;
dists[idx] = cut_dist;
if (mindistsq * epsError <= result_set.worstDist())
{
if (!searchLevel(
result_set, vec, otherChild, mindistsq, dists, epsError))
{
// the resultset doesn't want to receive any more points, we're
// done searching!
return false;
}
}
dists[idx] = dst;
return true;
}
public:
/** Stores the index in a binary file.
* IMPORTANT NOTE: The set of data points is NOT stored in the file, so
* when loading the index object it must be constructed associated to the
* same source of data points used while building it. See the example:
* examples/saveload_example.cpp \sa loadIndex */
void saveIndex(std::ostream& stream) const
{
Base::saveIndex(*this, stream);
}
/** Loads a previous index from a binary file.
* IMPORTANT NOTE: The set of data points is NOT stored in the file, so
* the index object must be constructed associated to the same source of
* data points used while building the index. See the example:
* examples/saveload_example.cpp \sa loadIndex */
void loadIndex(std::istream& stream) { Base::loadIndex(*this, stream); }
}; // class KDTree
/** kd-tree dynamic index
*
* Contains the k-d trees and other information for indexing a set of points
* for nearest-neighbor matching.
*
* The class "DatasetAdaptor" must provide the following interface (can be
* non-virtual, inlined methods):
*
* \code
* // Must return the number of data poins
* size_t kdtree_get_point_count() const { ... }
*
* // Must return the dim'th component of the idx'th point in the class:
* T kdtree_get_pt(const size_t idx, const size_t dim) const { ... }
*
* // Optional bounding-box computation: return false to default to a standard
* bbox computation loop.
* // Return true if the BBOX was already computed by the class and returned
* in "bb" so it can be avoided to redo it again.
* // Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3
* for point clouds) template <class BBOX> bool kdtree_get_bbox(BBOX &bb) const
* {
* bb[0].low = ...; bb[0].high = ...; // 0th dimension limits
* bb[1].low = ...; bb[1].high = ...; // 1st dimension limits
* ...
* return true;
* }
*
* \endcode
*
* \tparam DatasetAdaptor The user-provided adaptor (see comments above).
* \tparam Distance The distance metric to use: nanoflann::metric_L1,
* nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc.
* \tparam DIM Dimensionality of data points (e.g. 3 for 3D points)
* \tparam IndexType Type of the arguments with which the data can be
* accessed (e.g. float, double, int64_t, T*)
*/
template <
typename Distance, class DatasetAdaptor, int32_t DIM = -1,
typename IndexType = uint32_t>
class KDTreeSingleIndexDynamicAdaptor_
: public KDTreeBaseClass<
KDTreeSingleIndexDynamicAdaptor_<
Distance, DatasetAdaptor, DIM, IndexType>,
Distance, DatasetAdaptor, DIM, IndexType>
{
public:
/**
* The dataset used by this index
*/
const DatasetAdaptor& dataset_; //!< The source of our data
KDTreeSingleIndexAdaptorParams index_params_;
std::vector<int>& treeIndex_;
Distance distance_;
using Base = typename nanoflann::KDTreeBaseClass<
nanoflann::KDTreeSingleIndexDynamicAdaptor_<
Distance, DatasetAdaptor, DIM, IndexType>,
Distance, DatasetAdaptor, DIM, IndexType>;
using ElementType = typename Base::ElementType;
using DistanceType = typename Base::DistanceType;
using Offset = typename Base::Offset;
using Size = typename Base::Size;
using Dimension = typename Base::Dimension;
using Node = typename Base::Node;
using NodePtr = Node*;
using Interval = typename Base::Interval;
/** Define "BoundingBox" as a fixed-size or variable-size container
* depending on "DIM" */
using BoundingBox = typename Base::BoundingBox;
/** Define "distance_vector_t" as a fixed-size or variable-size container
* depending on "DIM" */
using distance_vector_t = typename Base::distance_vector_t;
/**
* KDTree constructor
*
* Refer to docs in README.md or online in
* https://github.com/jlblancoc/nanoflann
*
* The KD-Tree point dimension (the length of each point in the datase, e.g.
* 3 for 3D points) is determined by means of:
* - The \a DIM template parameter if >0 (highest priority)
* - Otherwise, the \a dimensionality parameter of this constructor.
*
* @param inputData Dataset with the input features. Its lifetime must be
* equal or longer than that of the instance of this class.
* @param params Basically, the maximum leaf node size
*/
KDTreeSingleIndexDynamicAdaptor_(
const Dimension dimensionality, const DatasetAdaptor& inputData,
std::vector<int>& treeIndex_,
const KDTreeSingleIndexAdaptorParams& params =
KDTreeSingleIndexAdaptorParams())
: dataset_(inputData),
index_params_(params),
treeIndex_(treeIndex_),
distance_(inputData)
{
Base::size_ = 0;
Base::size_at_index_build_ = 0;
for (auto& v : Base::root_bbox_) v = {};
Base::dim_ = dimensionality;
if (DIM > 0) Base::dim_ = DIM;
Base::leaf_max_size_ = params.leaf_max_size;
}
/** Explicitly default the copy constructor */
KDTreeSingleIndexDynamicAdaptor_(
const KDTreeSingleIndexDynamicAdaptor_& rhs) = default;
/** Assignment operator definiton */
KDTreeSingleIndexDynamicAdaptor_ operator=(
const KDTreeSingleIndexDynamicAdaptor_& rhs)
{
KDTreeSingleIndexDynamicAdaptor_ tmp(rhs);
std::swap(Base::vAcc_, tmp.Base::vAcc_);
std::swap(Base::leaf_max_size_, tmp.Base::leaf_max_size_);
std::swap(index_params_, tmp.index_params_);
std::swap(treeIndex_, tmp.treeIndex_);
std::swap(Base::size_, tmp.Base::size_);
std::swap(Base::size_at_index_build_, tmp.Base::size_at_index_build_);
std::swap(Base::root_node_, tmp.Base::root_node_);
std::swap(Base::root_bbox_, tmp.Base::root_bbox_);
std::swap(Base::pool_, tmp.Base::pool_);
return *this;
}
/**
* Builds the index
*/
void buildIndex()
{
Base::size_ = Base::vAcc_.size();
this->freeIndex(*this);
Base::size_at_index_build_ = Base::size_;
if (Base::size_ == 0) return;
computeBoundingBox(Base::root_bbox_);
// construct the tree
Base::root_node_ =
this->divideTree(*this, 0, Base::size_, Base::root_bbox_);
}
/** \name Query methods
* @{ */
/**
* Find set of nearest neighbors to vec[0:dim-1]. Their indices are stored
* inside the result object.
* This is the core search function, all others are wrappers around this
* one.
*
* \param result The result object in which the indices of the
* nearest-neighbors are stored.
* \param vec The vector of the query point for which to search the
* nearest neighbors.
* \param searchParams Optional parameters for the search.
*
* \tparam RESULTSET Should be any ResultSet<DistanceType>
* \return True if the requested neighbors could be found.
*
* \sa knnSearch(), radiusSearch(), radiusSearchCustomCallback()
*/
template <typename RESULTSET>
bool findNeighbors(
RESULTSET& result, const ElementType* vec,
const SearchParameters& searchParams = {}) const
{
assert(vec);
if (this->size(*this) == 0) return false;
if (!Base::root_node_) return false;
float epsError = 1 + searchParams.eps;
// fixed or variable-sized container (depending on DIM)
distance_vector_t dists;
// Fill it with zeros.
assign(
dists, (DIM > 0 ? DIM : Base::dim_),
static_cast<typename distance_vector_t::value_type>(0));
DistanceType distsq = this->computeInitialDistances(*this, vec, dists);
searchLevel(result, vec, Base::root_node_, distsq, dists, epsError);
return result.full();
}
/**
* Find the "num_closest" nearest neighbors to the \a query_point[0:dim-1].
* Their indices are stored inside the result object. \sa radiusSearch,
* findNeighbors
* \return Number `N` of valid points in
* the result set. Only the first `N` entries in `out_indices` and
* `out_distances_sq` will be valid. Return may be less than `num_closest`
* only if the number of elements in the tree is less than `num_closest`.
*/
Size knnSearch(
const ElementType* query_point, const Size num_closest,
IndexType* out_indices, DistanceType* out_distances_sq) const
{
nanoflann::KNNResultSet<DistanceType, IndexType> resultSet(num_closest);
resultSet.init(out_indices, out_distances_sq);
findNeighbors(resultSet, query_point);
return resultSet.size();
}
/**
* Find all the neighbors to \a query_point[0:dim-1] within a maximum
* radius. The output is given as a vector of pairs, of which the first
* element is a point index and the second the corresponding distance.
* Previous contents of \a IndicesDists are cleared.
*
* If searchParams.sorted==true, the output list is sorted by ascending
* distances.
*
* For a better performance, it is advisable to do a .reserve() on the
* vector if you have any wild guess about the number of expected matches.
*
* \sa knnSearch, findNeighbors, radiusSearchCustomCallback
* \return The number of points within the given radius (i.e. indices.size()
* or dists.size() )
*/
Size radiusSearch(
const ElementType* query_point, const DistanceType& radius,
std::vector<ResultItem<IndexType, DistanceType>>& IndicesDists,
const SearchParameters& searchParams = {}) const
{
RadiusResultSet<DistanceType, IndexType> resultSet(
radius, IndicesDists);
const size_t nFound =
radiusSearchCustomCallback(query_point, resultSet, searchParams);
if (searchParams.sorted)
std::sort(
IndicesDists.begin(), IndicesDists.end(), IndexDist_Sorter());
return nFound;
}
/**
* Just like radiusSearch() but with a custom callback class for each point
* found in the radius of the query. See the source of RadiusResultSet<> as
* a start point for your own classes. \sa radiusSearch
*/
template <class SEARCH_CALLBACK>
Size radiusSearchCustomCallback(
const ElementType* query_point, SEARCH_CALLBACK& resultSet,
const SearchParameters& searchParams = {}) const
{
findNeighbors(resultSet, query_point, searchParams);
return resultSet.size();
}
/** @} */
public:
void computeBoundingBox(BoundingBox& bbox)
{
const auto dims = (DIM > 0 ? DIM : Base::dim_);
resize(bbox, dims);
if (dataset_.kdtree_get_bbox(bbox))
{
// Done! It was implemented in derived class
}
else
{
const Size N = Base::size_;
if (!N)
throw std::runtime_error(
"[nanoflann] computeBoundingBox() called but "
"no data points found.");
for (Dimension i = 0; i < dims; ++i)
{
bbox[i].low = bbox[i].high =
this->dataset_get(*this, Base::vAcc_[0], i);
}
for (Offset k = 1; k < N; ++k)
{
for (Dimension i = 0; i < dims; ++i)
{
const auto val =
this->dataset_get(*this, Base::vAcc_[k], i);
if (val < bbox[i].low) bbox[i].low = val;
if (val > bbox[i].high) bbox[i].high = val;
}
}
}
}
/**
* Performs an exact search in the tree starting from a node.
* \tparam RESULTSET Should be any ResultSet<DistanceType>
*/
template <class RESULTSET>
void searchLevel(
RESULTSET& result_set, const ElementType* vec, const NodePtr node,
DistanceType mindistsq, distance_vector_t& dists,
const float epsError) const
{
/* If this is a leaf node, then do check and return. */
if ((node->child1 == nullptr) && (node->child2 == nullptr))
{
DistanceType worst_dist = result_set.worstDist();
for (Offset i = node->node_type.lr.left;
i < node->node_type.lr.right; ++i)
{
const IndexType index = Base::vAcc_[i]; // reorder... : i;
if (treeIndex_[index] == -1) continue;
DistanceType dist = distance_.evalMetric(
vec, index, (DIM > 0 ? DIM : Base::dim_));
if (dist < worst_dist)
{
if (!result_set.addPoint(
static_cast<typename RESULTSET::DistanceType>(dist),
static_cast<typename RESULTSET::IndexType>(
Base::vAcc_[i])))
{
// the resultset doesn't want to receive any more
// points, we're done searching!
return; // false;
}
}
}
return;
}
/* Which child branch should be taken first? */
Dimension idx = node->node_type.sub.divfeat;
ElementType val = vec[idx];
DistanceType diff1 = val - node->node_type.sub.divlow;
DistanceType diff2 = val - node->node_type.sub.divhigh;
NodePtr bestChild;
NodePtr otherChild;
DistanceType cut_dist;
if ((diff1 + diff2) < 0)
{
bestChild = node->child1;
otherChild = node->child2;
cut_dist =
distance_.accum_dist(val, node->node_type.sub.divhigh, idx);
}
else
{
bestChild = node->child2;
otherChild = node->child1;
cut_dist =
distance_.accum_dist(val, node->node_type.sub.divlow, idx);
}
/* Call recursively to search next level down. */
searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError);
DistanceType dst = dists[idx];
mindistsq = mindistsq + cut_dist - dst;
dists[idx] = cut_dist;
if (mindistsq * epsError <= result_set.worstDist())
{
searchLevel(
result_set, vec, otherChild, mindistsq, dists, epsError);
}
dists[idx] = dst;
}
public:
/** Stores the index in a binary file.
* IMPORTANT NOTE: The set of data points is NOT stored in the file, so
* when loading the index object it must be constructed associated to the
* same source of data points used while building it. See the example:
* examples/saveload_example.cpp \sa loadIndex */
void saveIndex(std::ostream& stream) { saveIndex(*this, stream); }
/** Loads a previous index from a binary file.
* IMPORTANT NOTE: The set of data points is NOT stored in the file, so
* the index object must be constructed associated to the same source of
* data points used while building the index. See the example:
* examples/saveload_example.cpp \sa loadIndex */
void loadIndex(std::istream& stream) { loadIndex(*this, stream); }
};
/** kd-tree dynaimic index
*
* class to create multiple static index and merge their results to behave as
* single dynamic index as proposed in Logarithmic Approach.
*
* Example of usage:
* examples/dynamic_pointcloud_example.cpp
*
* \tparam DatasetAdaptor The user-provided adaptor (see comments above).
* \tparam Distance The distance metric to use: nanoflann::metric_L1,
* nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. \tparam DIM
* Dimensionality of data points (e.g. 3 for 3D points) \tparam IndexType
* Will be typically size_t or int
*/
template <
typename Distance, class DatasetAdaptor, int32_t DIM = -1,
typename IndexType = uint32_t>
class KDTreeSingleIndexDynamicAdaptor
{
public:
using ElementType = typename Distance::ElementType;
using DistanceType = typename Distance::DistanceType;
using Offset = typename KDTreeSingleIndexDynamicAdaptor_<
Distance, DatasetAdaptor, DIM>::Offset;
using Size = typename KDTreeSingleIndexDynamicAdaptor_<
Distance, DatasetAdaptor, DIM>::Size;
using Dimension = typename KDTreeSingleIndexDynamicAdaptor_<
Distance, DatasetAdaptor, DIM>::Dimension;
protected:
Size leaf_max_size_;
Size treeCount_;
Size pointCount_;
/**
* The dataset used by this index
*/
const DatasetAdaptor& dataset_; //!< The source of our data
/** treeIndex[idx] is the index of tree in which point at idx is stored.
* treeIndex[idx]=-1 means that point has been removed. */
std::vector<int> treeIndex_;
std::unordered_set<int> removedPoints_;
KDTreeSingleIndexAdaptorParams index_params_;
Dimension dim_; //!< Dimensionality of each data point
using index_container_t = KDTreeSingleIndexDynamicAdaptor_<
Distance, DatasetAdaptor, DIM, IndexType>;
std::vector<index_container_t> index_;
public:
/** Get a const ref to the internal list of indices; the number of indices
* is adapted dynamically as the dataset grows in size. */
const std::vector<index_container_t>& getAllIndices() const
{
return index_;
}
private:
/** finds position of least significant unset bit */
int First0Bit(IndexType num)
{
int pos = 0;
while (num & 1)
{
num = num >> 1;
pos++;
}
return pos;
}
/** Creates multiple empty trees to handle dynamic support */
void init()
{
using my_kd_tree_t = KDTreeSingleIndexDynamicAdaptor_<
Distance, DatasetAdaptor, DIM, IndexType>;
std::vector<my_kd_tree_t> index(
treeCount_,
my_kd_tree_t(dim_ /*dim*/, dataset_, treeIndex_, index_params_));
index_ = index;
}
public:
Distance distance_;
/**
* KDTree constructor
*
* Refer to docs in README.md or online in
* https://github.com/jlblancoc/nanoflann
*
* The KD-Tree point dimension (the length of each point in the datase, e.g.
* 3 for 3D points) is determined by means of:
* - The \a DIM template parameter if >0 (highest priority)
* - Otherwise, the \a dimensionality parameter of this constructor.
*
* @param inputData Dataset with the input features. Its lifetime must be
* equal or longer than that of the instance of this class.
* @param params Basically, the maximum leaf node size
*/
explicit KDTreeSingleIndexDynamicAdaptor(
const int dimensionality, const DatasetAdaptor& inputData,
const KDTreeSingleIndexAdaptorParams& params =
KDTreeSingleIndexAdaptorParams(),
const size_t maximumPointCount = 1000000000U)
: dataset_(inputData), index_params_(params), distance_(inputData)
{
treeCount_ = static_cast<size_t>(std::log2(maximumPointCount)) + 1;
pointCount_ = 0U;
dim_ = dimensionality;
treeIndex_.clear();
if (DIM > 0) dim_ = DIM;
leaf_max_size_ = params.leaf_max_size;
init();
const size_t num_initial_points = dataset_.kdtree_get_point_count();
if (num_initial_points > 0) { addPoints(0, num_initial_points - 1); }
}
/** Deleted copy constructor*/
explicit KDTreeSingleIndexDynamicAdaptor(
const KDTreeSingleIndexDynamicAdaptor<
Distance, DatasetAdaptor, DIM, IndexType>&) = delete;
/** Add points to the set, Inserts all points from [start, end] */
void addPoints(IndexType start, IndexType end)
{
const Size count = end - start + 1;
int maxIndex = 0;
treeIndex_.resize(treeIndex_.size() + count);
for (IndexType idx = start; idx <= end; idx++)
{
const int pos = First0Bit(pointCount_);
maxIndex = std::max(pos, maxIndex);
treeIndex_[pointCount_] = pos;
const auto it = removedPoints_.find(idx);
if (it != removedPoints_.end())
{
removedPoints_.erase(it);
treeIndex_[idx] = pos;
}
for (int i = 0; i < pos; i++)
{
for (int j = 0; j < static_cast<int>(index_[i].vAcc_.size());
j++)
{
index_[pos].vAcc_.push_back(index_[i].vAcc_[j]);
if (treeIndex_[index_[i].vAcc_[j]] != -1)
treeIndex_[index_[i].vAcc_[j]] = pos;
}
index_[i].vAcc_.clear();
}
index_[pos].vAcc_.push_back(idx);
pointCount_++;
}
for (int i = 0; i <= maxIndex; ++i)
{
index_[i].freeIndex(index_[i]);
if (!index_[i].vAcc_.empty()) index_[i].buildIndex();
}
}
/** Remove a point from the set (Lazy Deletion) */
void removePoint(size_t idx)
{
if (idx >= pointCount_) return;
removedPoints_.insert(idx);
treeIndex_[idx] = -1;
}
/**
* Find set of nearest neighbors to vec[0:dim-1]. Their indices are stored
* inside the result object.
*
* Params:
* result = the result object in which the indices of the
* nearest-neighbors are stored vec = the vector for which to search the
* nearest neighbors
*
* \tparam RESULTSET Should be any ResultSet<DistanceType>
* \return True if the requested neighbors could be found.
* \sa knnSearch, radiusSearch
*/
template <typename RESULTSET>
bool findNeighbors(
RESULTSET& result, const ElementType* vec,
const SearchParameters& searchParams = {}) const
{
for (size_t i = 0; i < treeCount_; i++)
{ index_[i].findNeighbors(result, &vec[0], searchParams); }
return result.full();
}
};
/** An L2-metric KD-tree adaptor for working with data directly stored in an
* Eigen Matrix, without duplicating the data storage. You can select whether a
* row or column in the matrix represents a point in the state space.
*
* Example of usage:
* \code
* Eigen::Matrix<num_t,Eigen::Dynamic,Eigen::Dynamic> mat;
*
* // Fill out "mat"...
* using my_kd_tree_t = nanoflann::KDTreeEigenMatrixAdaptor<
* Eigen::Matrix<num_t,Dynamic,Dynamic>>;
*
* const int max_leaf = 10;
* my_kd_tree_t mat_index(mat, max_leaf);
* mat_index.index->...
* \endcode
*
* \tparam DIM If set to >0, it specifies a compile-time fixed dimensionality
* for the points in the data set, allowing more compiler optimizations.
* \tparam Distance The distance metric to use: nanoflann::metric_L1,
* nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc.
* \tparam row_major If set to true the rows of the matrix are used as the
* points, if set to false the columns of the matrix are used as the
* points.
*/
template <
class MatrixType, int32_t DIM = -1, class Distance = nanoflann::metric_L2,
bool row_major = true>
struct KDTreeEigenMatrixAdaptor
{
using self_t =
KDTreeEigenMatrixAdaptor<MatrixType, DIM, Distance, row_major>;
using num_t = typename MatrixType::Scalar;
using IndexType = typename MatrixType::Index;
using metric_t = typename Distance::template traits<
num_t, self_t, IndexType>::distance_t;
using index_t = KDTreeSingleIndexAdaptor<
metric_t, self_t,
row_major ? MatrixType::ColsAtCompileTime
: MatrixType::RowsAtCompileTime,
IndexType>;
index_t* index_; //! The kd-tree index for the user to call its methods as
//! usual with any other FLANN index.
using Offset = typename index_t::Offset;
using Size = typename index_t::Size;
using Dimension = typename index_t::Dimension;
/// Constructor: takes a const ref to the matrix object with the data points
explicit KDTreeEigenMatrixAdaptor(
const Dimension dimensionality,
const std::reference_wrapper<const MatrixType>& mat,
const int leaf_max_size = 10)
: m_data_matrix(mat)
{
const auto dims = row_major ? mat.get().cols() : mat.get().rows();
if (static_cast<Dimension>(dims) != dimensionality)
throw std::runtime_error(
"Error: 'dimensionality' must match column count in data "
"matrix");
if (DIM > 0 && static_cast<int32_t>(dims) != DIM)
throw std::runtime_error(
"Data set dimensionality does not match the 'DIM' template "
"argument");
index_ = new index_t(
dims, *this /* adaptor */,
nanoflann::KDTreeSingleIndexAdaptorParams(leaf_max_size));
}
public:
/** Deleted copy constructor */
KDTreeEigenMatrixAdaptor(const self_t&) = delete;
~KDTreeEigenMatrixAdaptor() { delete index_; }
const std::reference_wrapper<const MatrixType> m_data_matrix;
/** Query for the \a num_closest closest points to a given point (entered as
* query_point[0:dim-1]). Note that this is a short-cut method for
* index->findNeighbors(). The user can also call index->... methods as
* desired.
*/
void query(
const num_t* query_point, const Size num_closest,
IndexType* out_indices, num_t* out_distances_sq) const
{
nanoflann::KNNResultSet<num_t, IndexType> resultSet(num_closest);
resultSet.init(out_indices, out_distances_sq);
index_->findNeighbors(resultSet, query_point);
}
/** @name Interface expected by KDTreeSingleIndexAdaptor
* @{ */
const self_t& derived() const { return *this; }
self_t& derived() { return *this; }
// Must return the number of data points
Size kdtree_get_point_count() const
{
if (row_major)
return m_data_matrix.get().rows();
else
return m_data_matrix.get().cols();
}
// Returns the dim'th component of the idx'th point in the class:
num_t kdtree_get_pt(const IndexType idx, size_t dim) const
{
if (row_major)
return m_data_matrix.get().coeff(idx, IndexType(dim));
else
return m_data_matrix.get().coeff(IndexType(dim), idx);
}
// Optional bounding-box computation: return false to default to a standard
// bbox computation loop.
// Return true if the BBOX was already computed by the class and returned
// in "bb" so it can be avoided to redo it again. Look at bb.size() to
// find out the expected dimensionality (e.g. 2 or 3 for point clouds)
template <class BBOX>
bool kdtree_get_bbox(BBOX& /*bb*/) const
{
return false;
}
/** @} */
}; // end of KDTreeEigenMatrixAdaptor
/** @} */
/** @} */ // end of grouping
} // namespace nanoflann