/* This example demonstrates how to use OpenCorr to perform stereo matching of the points in two camera views. In this method, SIFT feature guided matching is able to correctly process most of points. The points with highly reliable results are used ot estimate the parallax between the two views, which is assumed to be a bi-linear function of coordinates with image center as orgin. Using the obtained parallax, the epipolar constraint aided matching is employed to tackle the points with ZNCC value less than 0.9. The ICGN algorithm with the 2nd order shape function is used for refined matching. */ #include #include "opencorr.h" using namespace opencorr; using namespace std; int main() { //set paths of images //in this example, the right image of initial state is used as the reference image string view1_image_path = "d:/dic_tests/3d_dic/Step18 00,00-0005_0.tif"; //replace it with the path on your computer string view2_image_path = "d:/dic_tests/3d_dic/Step18 00,00-0005_1.tif"; //replace it with the path on your computer //create the instances of images Image2D view1_img(view1_image_path); Image2D view2_img(view2_image_path); //initialize papameters for timing double timer_tic, timer_toc, consumed_time; vector computation_time; //get the time of start timer_tic = omp_get_wtime(); //create instances to read and write csv files string file_path; string delimiter = ","; ofstream csv_out; //instance for output calculation time IO2D in_out; //instance for input and output DIC data in_out.setDelimiter(delimiter); in_out.setHeight(view2_img.height); in_out.setWidth(view2_img.width); //set OpenMP parameters int cpu_thread_number = omp_get_num_procs() - 1; omp_set_num_threads(cpu_thread_number); //create the instances of camera parameters CameraIntrinsics view1_cam_intrinsics, view2_cam_intrinsics; CameraExtrinsics view1_cam_extrinsics, view2_cam_extrinsics; view1_cam_intrinsics.fx = 10664.80664f; view1_cam_intrinsics.fy = 10643.88965f; view1_cam_intrinsics.fs = 0.f; view1_cam_intrinsics.cx = 1176.03418f; view1_cam_intrinsics.cy = 914.7337036f; view1_cam_intrinsics.k1 = 0.030823536f; view1_cam_intrinsics.k2 = -1.350255132f; view1_cam_intrinsics.k3 = 74.21749878f; view1_cam_intrinsics.k4 = 0; view1_cam_intrinsics.k5 = 0; view1_cam_intrinsics.k6 = 0; view1_cam_intrinsics.p1 = 0; view1_cam_intrinsics.p2 = 0; view1_cam_extrinsics.tx = 0; view1_cam_extrinsics.ty = 0; view1_cam_extrinsics.tz = 0; view1_cam_extrinsics.rx = 0; view1_cam_extrinsics.ry = 0; view1_cam_extrinsics.rz = 0; view2_cam_intrinsics.fx = 10749.53223f; view2_cam_intrinsics.fy = 10726.52441f; view2_cam_intrinsics.fs = 0.f; view2_cam_intrinsics.cx = 1034.707886f; view2_cam_intrinsics.cy = 1062.162842f; view2_cam_intrinsics.k1 = 0.070953421f; view2_cam_intrinsics.k2 = -4.101067066f; view2_cam_intrinsics.k3 = 74.21749878f; view2_cam_intrinsics.k4 = 0; view2_cam_intrinsics.k5 = 0; view2_cam_intrinsics.k6 = 0; view2_cam_intrinsics.p1 = 0; view2_cam_intrinsics.p2 = 0; view2_cam_extrinsics.tx = 250.881488962793f; view2_cam_extrinsics.ty = -1.15469183120196f; view2_cam_extrinsics.tz = 37.4849858174401f; view2_cam_extrinsics.rx = 0.01450813f; view2_cam_extrinsics.ry = -0.39152833f; view2_cam_extrinsics.rz = 0.01064092f; //create the instances for stereovision Calibration cam_view1_calib(view1_cam_intrinsics, view1_cam_extrinsics); Calibration cam_view2_calib(view2_cam_intrinsics, view2_cam_extrinsics); cam_view1_calib.prepare(view1_img.height, view1_img.width); cam_view2_calib.prepare(view2_img.height, view2_img.width); Stereovision stereo_reconstruction(&cam_view1_calib, &cam_view2_calib, cpu_thread_number); //create queues of points and POIs for stereo matching and reconstruction vector view1_pt_queue; //points for stereo reconstruction vector poi_queue; //POI for matching vector poi_result_queue; //POI used to store the results //set POIs Point2D upper_left_point(420, 250); int poi_number_x = 313; int poi_number_y = 313; int grid_space = 5; //store POIs in a queue for (int i = 0; i < poi_number_y; i++) { for (int j = 0; j < poi_number_x; j++) { Point2D offset(j * grid_space, i * grid_space); Point2D current_point = upper_left_point + offset; view1_pt_queue.push_back(current_point); POI2D current_poi(current_point); poi_queue.push_back(current_poi); POI2DS current_poi_2ds(current_point); poi_result_queue.push_back(current_poi_2ds); } } int queue_length = (int)view1_pt_queue.size(); //create a queue of 2D points for stereo matching Point2D point_2d; vector view2_pt_queue(queue_length, point_2d); //create a queue of 3D points for reconstruction Point3D point_3d; vector pt_3d_queue(queue_length, point_3d); //create an instance of ICGN with the 2nd order shape function int subset_radius_x = 9; int subset_radius_y = 9; float conv_criterion = 0.001f; float stop_condition = 10; ICGN2D2* icgn2 = new ICGN2D2(subset_radius_x, subset_radius_y, conv_criterion, stop_condition, cpu_thread_number); //create an instance for epipolar constraint aided matching EpipolarSearch* epipolar_search = new EpipolarSearch(cam_view1_calib, cam_view2_calib, cpu_thread_number); //set search parameters in epipolar constraint aided matching int search_radius = 90; int search_step = 3; epipolar_search->setSearch(search_radius, search_step); //initialize an ICGN2D1 instance in epipolar constraint aided matching subset_radius_x = 16; subset_radius_y = 16; conv_criterion = 0.05f; stop_condition = 9; epipolar_search->createICGN(subset_radius_x, subset_radius_y, conv_criterion, stop_condition); //create a FeatureAffine instance along with a SIFT instance to exstimate a map of parallax between the two views FeatureAffine2D* feature_affine = new FeatureAffine2D(subset_radius_x, subset_radius_y, cpu_thread_number); SIFT2D* sift = new SIFT2D(); //set search paramaters of Feature Affine int search_radius_x = 16; int search_radius_y = 16; float neighbor_search_radius = sqrt(search_radius_x * search_radius_x + search_radius_y * search_radius_y); int min_neighbor_number = 14; feature_affine->setSearchParameters(neighbor_search_radius, min_neighbor_number); //set RANSAC configuration in Feature Affine RansacConfig ransac_config; ransac_config.trial_number = 10; ransac_config.sample_mumber = 5; ransac_config.error_threshold = 2; feature_affine->setRansacConfig(ransac_config); //assign the image pair to the instances icgn2->setImages(view1_img, view2_img); epipolar_search->setImages(view1_img, view2_img); feature_affine->setImages(view1_img, view2_img); sift->setImages(view1_img, view2_img); //get the time of end timer_toc = omp_get_wtime(); consumed_time = timer_toc - timer_tic; computation_time.push_back(consumed_time); //0 //display the time of initialization on screen cout << "Initialization with " << queue_length << " POIs takes " << consumed_time << " sec, " << cpu_thread_number << " CPU threads launched." << std::endl; //the first round: SIFT feature guided stereo matching //get the time of start timer_tic = omp_get_wtime(); //SIFT feature extraction and matching sift->prepare(); sift->compute(); //assign keypoint pairs to FeatureAffine instance feature_affine->setKeypointPair(sift->ref_matched_kp, sift->tar_matched_kp); //feature aided matching feature_affine->prepare(); feature_affine->compute(poi_queue); //refined registration icgn2->prepare(); icgn2->compute(poi_queue); int counter_i = 0; for (int i = 0; i < queue_length; i++) { if (poi_queue[i].result.zncc >= 0.9f) { counter_i++; } } //get the time of end timer_toc = omp_get_wtime(); consumed_time = timer_toc - timer_tic; computation_time.push_back(consumed_time); //1 //display the time of processing on the screen std::cout << "SIFT feature guided stereo matching takes " << consumed_time << " sec." << std::endl; std::cout << "POIs with ZNCC >= 0.9: " << counter_i * 100.f / queue_length << "%" << std::endl; //the second round: epipolar constraint aided matching //get the time of start timer_tic = omp_get_wtime(); //estimate the parallax for epipolar constraint aided matching std::vector poi_high_zncc; std::vector poi_low_zncc; std::vector poi_lz_idx; for (int i = 0; i < queue_length; i++) { if (poi_queue[i].result.zncc >= 0.998f) { poi_high_zncc.push_back(poi_queue[i]); } else if (poi_queue[i].result.zncc < 0.9f) { poi_queue[i].deformation.u = 0.f; poi_queue[i].deformation.v = 0.f; poi_queue[i].result.zncc = 0.f; poi_low_zncc.push_back(poi_queue[i]); poi_lz_idx.push_back(i); } } //convert the coordinates to the coordinate system using image center as origin int queue_size = (int)poi_high_zncc.size(); std::cout << "POIs used to estimate parallax: " << queue_size << " of " << queue_length << std::endl; Point2D img_center(int(view1_img.width / 2), int(view1_img.height / 2)); for (int i = 0; i < queue_size; i++) { poi_high_zncc[i].x -= img_center.x; poi_high_zncc[i].y -= img_center.y; } //estimate the linear regression coefficients using least squares metthod Eigen::MatrixXf point_coor(queue_size, 3); //coordinates of points Eigen::MatrixXf parallax(queue_size, 3); //parallax along x and y axes for (int i = 0; i < queue_size; i++) { point_coor(i, 0) = poi_high_zncc[i].x; point_coor(i, 1) = poi_high_zncc[i].y; point_coor(i, 2) = 1.f; parallax(i, 0) = poi_high_zncc[i].deformation.u; parallax(i, 1) = poi_high_zncc[i].deformation.v; parallax(i, 2) = 0.f; } Eigen::Matrix3f lr_matrix = point_coor.colPivHouseholderQr().solve(parallax); float lr_x[3], lr_y[3]; lr_x[0] = lr_matrix(0, 0); lr_x[1] = lr_matrix(1, 0); lr_x[2] = lr_matrix(2, 0); lr_y[0] = lr_matrix(0, 1); lr_y[1] = lr_matrix(1, 1); lr_y[2] = lr_matrix(2, 1); epipolar_search->setParallax(lr_x, lr_y); //get the time of end timer_toc = omp_get_wtime(); consumed_time = timer_toc - timer_tic; computation_time.push_back(consumed_time); //2 //display the time of processing on the screen std::cout << "Estimate parallax takes " << consumed_time << " sec." << std::endl; std::cout << "Parallax_x = " << lr_x[2] << " + " << lr_x[0] << "x + " << lr_x[1] << "y" << std::endl; std::cout << "Parallax_y = " << lr_y[2] << " + " << lr_y[0] << "x + " << lr_y[1] << "y" << std::endl; //get the time of start timer_tic = omp_get_wtime(); //coarse registration epipolar_search->prepare(); epipolar_search->compute(poi_low_zncc); //refined registration conv_criterion = 0.001f; stop_condition = 10; icgn2->setIteration(conv_criterion, stop_condition); icgn2->compute(poi_low_zncc); queue_size = (int)poi_lz_idx.size(); for (int i = 0; i < queue_size; i++) { poi_queue[poi_lz_idx[i]] = poi_low_zncc[i]; } std::cout << "POIs are processed using epipolar constraint aided mathcing: " << queue_size << " of " << queue_length << std::endl; //store the results of stereo matching counter_i = 0; for (int i = 0; i < queue_length; i++) { Point2D current_location(poi_queue[i].x, poi_queue[i].y); Point2D current_offset(poi_queue[i].deformation.u, poi_queue[i].deformation.v); view2_pt_queue[i] = current_location + current_offset; if (isnan(poi_queue[i].result.zncc)) { poi_result_queue[i].result.r2_x = 0; poi_result_queue[i].result.r2_y = 0; poi_result_queue[i].result.r1r2_zncc = -2; counter_i++; } else { poi_result_queue[i].result.r2_x = view2_pt_queue[i].x; poi_result_queue[i].result.r2_y = view2_pt_queue[i].y; poi_result_queue[i].result.r1r2_zncc = poi_queue[i].result.zncc; if (poi_queue[i].result.zncc < 0.9f) { counter_i++; } } } //get the time of end timer_toc = omp_get_wtime(); consumed_time = timer_toc - timer_tic; computation_time.push_back(consumed_time); //3 //display the time of processing on the screen std::cout << "Epipolar constraint aided matching takes " << consumed_time << " sec." << std::endl; std::cout << "POIs with ZNCC < 0.9: " << counter_i * 100.f / queue_length << "%" << std::endl; //stereo reconstruction based on the matched point pairs //get the time of start timer_tic = omp_get_wtime(); //reconstruct the coordinates in world coordinate system stereo_reconstruction.prepare(); stereo_reconstruction.reconstruct(view1_pt_queue, view2_pt_queue, pt_3d_queue); //store the 3D coordinates for output for (int i = 0; i < queue_length; i++) { poi_result_queue[i].ref_coor.x = pt_3d_queue[i].x; poi_result_queue[i].ref_coor.y = pt_3d_queue[i].y; poi_result_queue[i].ref_coor.z = pt_3d_queue[i].z; } //get the time of end timer_toc = omp_get_wtime(); consumed_time = timer_toc - timer_tic; computation_time.push_back(consumed_time); //4 //display the time of processing on the screen std::cout << "Stereo reconstruction: " << consumed_time << " sec." << std::endl; //save the calculated dispalcements file_path = view2_image_path.substr(0, view2_image_path.find_last_of(".")) + "_reconstruction_sift_epipolar.csv"; in_out.setPath(file_path); in_out.saveTable2DS(poi_result_queue); //save the computation time file_path = view2_image_path.substr(0, view2_image_path.find_last_of(".")) + "_reconstruction_sift_epipolar_time.csv"; csv_out.open(file_path); if (csv_out.is_open()) { csv_out << "POI number" << delimiter << "Initialization" << delimiter << "Feature guided matching" << delimiter << "Estimation of parallax" << delimiter << "Epipolar constraint aided matching" << delimiter << "reconstruction" << endl; csv_out << poi_queue.size() << delimiter << computation_time[0] << delimiter << computation_time[1] << delimiter << computation_time[2] << delimiter << computation_time[3] << delimiter << computation_time[4] << endl; } csv_out.close(); //destroy the instances delete icgn2; delete epipolar_search; delete feature_affine; delete sift; std::cout << "Press any key to exit..." << std::endl; std::cin.get(); return 0; }