/* This example demonstrates how to use OpenCorr to realize 3D/stereo DIC. In the implementation, the stereo matching between the two views uses epipolar constraint aided method and the ICGN algorithm with the 2nd order shape function, while the matching between the same view before and after deformation uses the SIFT feature guided method and the ICGN algorithm with the 1st order shape function. */ #include #include "opencorr.h" using namespace opencorr; using namespace std; int main() { //set paths of images. //in this example, the right image of initial state is used as the reference image string ref_view1_image_path = "d:/dic_tests/3d_dic/GT4-0000_0.tif"; //replace it with the path on your computer string ref_view2_image_path = "d:/dic_tests/3d_dic/GT4-0000_1.tif"; //replace it with the path on your computer string tar_view1_image_path = "d:/dic_tests/3d_dic/GT4-0273_0.tif"; //replace it with the path on your computer string tar_view2_image_path = "d:/dic_tests/3d_dic/GT4-0273_1.tif"; //replace it with the path on your computer //create the instances of images Image2D ref_view1_img(ref_view1_image_path); Image2D ref_view2_img(ref_view2_image_path); Image2D tar_view1_img(tar_view1_image_path); Image2D tar_view2_img(tar_view2_image_path); //create instances to read and write csv files string delimiter = ","; ofstream csv_out; //instance for output calculation time IO2D in_out; //instance for input and output DIC data in_out.setDelimiter(delimiter); in_out.setHeight(ref_view1_img.height); in_out.setWidth(ref_view1_img.width); //load the coordinates of POIs in principal view string file_path = "d:/dic_tests/3d_dic/GT4-POIs.csv"; //replace it with the path on your computer vector ref_view1_pt_queue = in_out.loadPoint2D(file_path); int queue_length = (int)ref_view1_pt_queue.size(); //initialize papameters for timing double timer_tic, timer_toc, consumed_time; vector computation_time; //get the time of start timer_tic = omp_get_wtime(); //set OpenMP parameters int cpu_thread_number = omp_get_num_procs() - 1; omp_set_num_threads(cpu_thread_number); //create the instances of camera parameters CameraIntrinsics view1_cam_intrinsics, view2_cam_intrinsics; CameraExtrinsics view1_cam_extrinsics, view2_cam_extrinsics; view1_cam_intrinsics.fx = 6673.315918f; view1_cam_intrinsics.fy = 6669.302734f; view1_cam_intrinsics.fs = 0.f; view1_cam_intrinsics.cx = 872.15778f; view1_cam_intrinsics.cy = 579.95532f; view1_cam_intrinsics.k1 = 0.032258954f; view1_cam_intrinsics.k2 = -1.01141417f; view1_cam_intrinsics.k3 = 29.78838921f; view1_cam_intrinsics.k4 = 0; view1_cam_intrinsics.k5 = 0; view1_cam_intrinsics.k6 = 0; view1_cam_intrinsics.p1 = 0; view1_cam_intrinsics.p2 = 0; view1_cam_extrinsics.tx = 0; view1_cam_extrinsics.ty = 0; view1_cam_extrinsics.tz = 0; view1_cam_extrinsics.rx = 0; view1_cam_extrinsics.ry = 0; view1_cam_extrinsics.rz = 0; view2_cam_intrinsics.fx = 6607.618164f; view2_cam_intrinsics.fy = 6602.857422f; view2_cam_intrinsics.fs = 0.f; view2_cam_intrinsics.cx = 917.9733887f; view2_cam_intrinsics.cy = 531.6352539f; view2_cam_intrinsics.k1 = 0.064598486f; view2_cam_intrinsics.k2 = -4.531373978f; view2_cam_intrinsics.k3 = 29.78838921f; view2_cam_intrinsics.k4 = 0; view2_cam_intrinsics.k5 = 0; view2_cam_intrinsics.k6 = 0; view2_cam_intrinsics.p1 = 0; view2_cam_intrinsics.p2 = 0; view2_cam_extrinsics.tx = 122.24886f; view2_cam_extrinsics.ty = 1.8488892f; view2_cam_extrinsics.tz = 17.624638f; view2_cam_extrinsics.rx = 0.00307711f; view2_cam_extrinsics.ry = -0.33278773f; view2_cam_extrinsics.rz = 0.00524556f; //create the instances for stereovision Calibration cam_view1_calib(view1_cam_intrinsics, view1_cam_extrinsics); Calibration cam_view2_calib(view2_cam_intrinsics, view2_cam_extrinsics); cam_view1_calib.prepare(ref_view1_img.height, ref_view1_img.width); cam_view2_calib.prepare(ref_view2_img.height, ref_view2_img.width); Stereovision stereo_reconstruction(&cam_view1_calib, &cam_view2_calib, cpu_thread_number); //create the the queues of 2D points for stereo matching and reconstruction Point2D point_2d; vector ref_view2_pt_queue(queue_length, point_2d); vector tar_view1_pt_queue(queue_length, point_2d); vector tar_view2_pt_queue(queue_length, point_2d); //create the the queues of 3D points for stereo reconstruction Point3D point_3d; vector ref_pt_3d_queue(queue_length, point_3d); vector tar_pt_3d_queue(queue_length, point_3d); //create the queues of POIs for matching POI2D poi_2d(point_2d); vector poi_queue(queue_length, poi_2d); vector poi_round_queue(queue_length, poi_2d); vector poi_result_queue(queue_length, poi_2d); //assign the coordinates to POI queues #pragma omp parallel for for (int i = 0; i < (int)queue_length; i++) { poi_queue[i].x = ref_view1_pt_queue[i].x; poi_queue[i].y = ref_view1_pt_queue[i].y; poi_result_queue[i].x = ref_view1_pt_queue[i].x; poi_result_queue[i].y = ref_view1_pt_queue[i].y; } //set DIC parameters int subset_radius_x = 16; int subset_radius_y = 16; float conv_criterion = 0.001f; int stop_condition = 10; //initialize ICGN with the 1st order shape function ICGN2D1* icgn1 = new ICGN2D1(subset_radius_x, subset_radius_y, conv_criterion, stop_condition, cpu_thread_number); //initialize ICGN with the 2nd order shape function ICGN2D2* icgn2 = new ICGN2D2(subset_radius_x, subset_radius_y, conv_criterion, stop_condition, cpu_thread_number); //create the instances for SIFT feature aided matching SIFT2D* sift = new SIFT2D(); FeatureAffine2D* feature_affine = new FeatureAffine2D(subset_radius_x, subset_radius_y, cpu_thread_number); //create an instance for epipolar constraint aided matching EpipolarSearch* epipolar_search = new EpipolarSearch(cam_view1_calib, cam_view2_calib, cpu_thread_number); //set search parameters in epipolar constraint aided matching Point2D parallax_guess(-30, -40); epipolar_search->setParallax(parallax_guess); int search_radius = 30; int search_step = 5; epipolar_search->setSearch(search_radius, search_step); //initialize an ICGN2D1 instance in epipolar constraint aided matching subset_radius_x = 20; subset_radius_y = 20; conv_criterion = 0.05f; stop_condition = 5; epipolar_search->createICGN(subset_radius_x, subset_radius_y, conv_criterion, stop_condition); //get the time of end timer_toc = omp_get_wtime(); consumed_time = timer_toc - timer_tic; computation_time.push_back(consumed_time); //0 //display the time of initialization on screen cout << "Initialization with " << queue_length << " POIs takes " << consumed_time << " sec, " << cpu_thread_number << " CPU threads launched." << std::endl; //get the time of start timer_tic = omp_get_wtime(); //stereo matching between reference view1 and reference view2 epipolar_search->setImages(ref_view1_img, ref_view2_img); epipolar_search->prepare(); //coarse registration epipolar_search->compute(poi_queue); //refined registration icgn2->setImages(ref_view1_img, ref_view2_img); icgn2->prepare(); icgn2->compute(poi_queue); //store the results of stereo matching between the two reference views #pragma omp parallel for for (int i = 0; i < queue_length; ++i) { Point2D current_location(poi_queue[i].x, poi_queue[i].y); Point2D current_offset(poi_queue[i].deformation.u, poi_queue[i].deformation.v); ref_view2_pt_queue[i] = current_location + current_offset; poi_result_queue[i].result.r2_x = ref_view2_pt_queue[i].x; poi_result_queue[i].result.r2_y = ref_view2_pt_queue[i].y; poi_result_queue[i].result.r1r2_zncc = poi_queue[i].result.zncc; } //get the time of end timer_toc = omp_get_wtime(); consumed_time = timer_toc - timer_tic; computation_time.push_back(consumed_time); //1 //display the time of processing on the screen cout << "Stereo matching between reference view1 and view2 takes " << consumed_time << " sec." << std::endl; //get the time of start timer_tic = omp_get_wtime(); //temporal matching between reference view1 and target view 1 //extract and match the SIFT features sift->setImages(ref_view1_img, tar_view1_img); sift->prepare(); sift->compute(); //estimate the deformation according to the SIFT features around each POIs feature_affine->setImages(ref_view1_img, tar_view1_img); feature_affine->setKeypointPair(sift->ref_matched_kp, sift->tar_matched_kp); feature_affine->prepare(); feature_affine->compute(poi_queue); //high accuracy registration icgn1->setImages(ref_view1_img, tar_view1_img); icgn1->prepare(); icgn1->compute(poi_queue); //store the results of temporal matching #pragma omp parallel for for (int i = 0; i < queue_length; ++i) { Point2D current_location(poi_queue[i].x, poi_queue[i].y); Point2D current_offset(poi_queue[i].deformation.u, poi_queue[i].deformation.v); tar_view1_pt_queue[i] = current_location + current_offset; poi_result_queue[i].result.t1_x = tar_view1_pt_queue[i].x; poi_result_queue[i].result.t1_y = tar_view1_pt_queue[i].y; poi_result_queue[i].result.r1t1_zncc = poi_queue[i].result.zncc; poi_round_queue[i].x = round(tar_view1_pt_queue[i].x); poi_round_queue[i].y = round(tar_view1_pt_queue[i].y); } //get the time of end timer_toc = omp_get_wtime(); consumed_time = timer_toc - timer_tic; computation_time.push_back(consumed_time); //2 //display the time of processing on the screen cout << "Temporal matching between reference view1 and target view1 takes " << consumed_time << " sec." << std::endl; //get the time of start timer_tic = omp_get_wtime(); //stereo matching between reference view1 and target view2 //coase stereo matching between target view1 and taget view2 parallax_guess.x = -30.f; parallax_guess.y = -40.f; epipolar_search->setParallax(parallax_guess); epipolar_search->setImages(tar_view1_img, tar_view2_img); epipolar_search->prepare(); epipolar_search->compute(poi_round_queue); //combine the dispalcements obtained by stereo matching and temperoal matching #pragma omp parallel for for (int i = 0; i < queue_length; ++i) { poi_queue[i].deformation.u += poi_round_queue[i].deformation.u; poi_queue[i].deformation.v += poi_round_queue[i].deformation.v; } //stereo matching between reference view1 and target view2 icgn2->setImages(ref_view1_img, tar_view2_img); icgn2->prepare(); icgn2->compute(poi_queue); //store the results of matching #pragma omp parallel for for (int i = 0; i < queue_length; ++i) { Point2D current_location(poi_queue[i].x, poi_queue[i].y); Point2D current_offset(poi_queue[i].deformation.u, poi_queue[i].deformation.v); tar_view2_pt_queue[i] = current_location + current_offset; poi_result_queue[i].result.t2_x = tar_view2_pt_queue[i].x; poi_result_queue[i].result.t2_y = tar_view2_pt_queue[i].y; poi_result_queue[i].result.r1t2_zncc = poi_queue[i].result.zncc; } //get the time of end timer_toc = omp_get_wtime(); consumed_time = timer_toc - timer_tic; computation_time.push_back(consumed_time); //3 //display the time of processing on the screen cout << "Stereo matching between reference view1 and target view2 takes " << consumed_time << " sec." << std::endl; //get the time of start timer_tic = omp_get_wtime(); //reconstruct the 3D coordinates in world coordinate system stereo_reconstruction.prepare(); stereo_reconstruction.reconstruct(ref_view1_pt_queue, ref_view2_pt_queue, ref_pt_3d_queue); stereo_reconstruction.reconstruct(tar_view1_pt_queue, tar_view2_pt_queue, tar_pt_3d_queue); //calculate the 3D displacements of POIs #pragma omp parallel for for (int i = 0; i < queue_length; i++) { poi_result_queue[i].ref_coor = ref_pt_3d_queue[i]; poi_result_queue[i].tar_coor = tar_pt_3d_queue[i]; poi_result_queue[i].deformation.u = tar_pt_3d_queue[i].x - ref_pt_3d_queue[i].x; poi_result_queue[i].deformation.v = tar_pt_3d_queue[i].y - ref_pt_3d_queue[i].y; poi_result_queue[i].deformation.w = tar_pt_3d_queue[i].z - ref_pt_3d_queue[i].z; } //get the time of end timer_toc = omp_get_wtime(); consumed_time = timer_toc - timer_tic; computation_time.push_back(consumed_time); //4 //display the time of processing on the screen cout << "Stereo reconstruction and calculation of displacements takes " << consumed_time << " sec." << std::endl; //save the results file_path = tar_view1_image_path.substr(0, tar_view1_image_path.find_last_of(".")) + "_epipolar_sift_r16.csv"; in_out.setPath(file_path); in_out.saveTable2DS(poi_result_queue); //save the computation time file_path = tar_view1_image_path.substr(0, tar_view1_image_path.find_last_of(".")) + "_epipolar_sift_r16_time.csv"; csv_out.open(file_path); if (csv_out.is_open()) { csv_out << "POI number" << delimiter << "Initialization" << delimiter << "r1_to_r2" << delimiter << "r1_to_t1" << delimiter << "r1_to_t2" << delimiter << "reconstruction" << endl; csv_out << poi_queue.size() << delimiter << computation_time[0] << delimiter << computation_time[1] << delimiter << computation_time[2] << delimiter << computation_time[3] << delimiter << computation_time[4] << endl; } csv_out.close(); delete icgn1; delete icgn2; delete sift; delete feature_affine; delete epipolar_search; cout << "Press any key to exit..." << std::endl; cin.get(); return 0; }