DIC源码
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

167 lines
5.5 KiB

3 months ago
/*
This example demonstrates how to use OpenCorr to realize a path-independent
DVC method based on the 3D SIFT feature guided deformation estimation and the
ICGN algorithm (with the 1st order shape function).
*/
#include <fstream>
#include "opencorr.h"
using namespace opencorr;
using namespace std;
int main()
{
//set files to process
string ref_image_path = "d:/dic_tests/dvc/Torus_ref.tif"; //replace it with the path on your computer
string tar_image_path = "d:/dic_tests/dvc/Torus_def.tif"; //replace it with the path on your computer
Image3D ref_img(ref_image_path);
Image3D tar_img(tar_image_path);
//initialize papameters for timing
double timer_tic, timer_toc, consumed_time;
vector<double> computation_time;
//get the time of start
timer_tic = omp_get_wtime();
//create instances to read and write csv files
string file_path;
string delimiter = ",";
ofstream csv_out; //instance for output matched keypoints and calculation time
IO3D in_out; //instance for input and output DIC data
in_out.setDelimiter(delimiter);
in_out.setDimX(ref_img.dim_x);
in_out.setDimY(ref_img.dim_y);
in_out.setDimZ(ref_img.dim_z);
//set path of csv file that contains the coordinates of POIs
file_path = "d:/dic_tests/dvc/Torus_POIs.csv"; //replace it with the path on your computer
in_out.setPath(file_path);
//load the coordinates of POIs
vector<Point3D> point_queue = in_out.loadPoint3D(file_path);
int queue_length = (int)point_queue.size();
//set OpenMP parameters
int cpu_thread_number = omp_get_num_procs() - 1;
omp_set_num_threads(cpu_thread_number);
//initialize a queue of POIs
POI3D cur_poi(0, 0, 0);
vector<POI3D> poi_queue(queue_length, cur_poi);
#pragma omp parallel for
for (int i = 0; i < queue_length; i++)
{
poi_queue[i].x = point_queue[i].x;
poi_queue[i].y = point_queue[i].y;
poi_queue[i].z = point_queue[i].z;
}
//set DIC parameters
int subset_radius_x = 16;
int subset_radius_y = 16;
int subset_radius_z = 16;
int max_iteration = 10; //used in ICGN
float max_deformation_norm = 0.001f; //used in ICGN
//get the time of end
timer_toc = omp_get_wtime();
consumed_time = timer_toc - timer_tic;
computation_time.push_back(consumed_time); //0
//display the time of initialization on screen
cout << "Initialization with " << queue_length << " POIs takes " << consumed_time << " sec, " << cpu_thread_number << " CPU threads launched." << std::endl;
//get the time of start
timer_tic = omp_get_wtime();
//SIFT extraction and matching
SIFT3D* sift = new SIFT3D();
sift->setImages(ref_img, tar_img);
sift->prepare();
sift->compute();
//get the time of end
timer_toc = omp_get_wtime();
consumed_time = timer_toc - timer_tic;
computation_time.push_back(consumed_time); //1
//display the time of processing on screen
int kp_amount = (int)sift->ref_matched_kp.size();
cout << "Extraction and matching of " << kp_amount << " 3D SIFT features takes " << consumed_time << " sec." << std::endl;
//save the coordinates of matched keypoints
file_path = tar_image_path.substr(0, tar_image_path.find_last_of(".")) + "_matched_kp.csv";
csv_out.open(file_path);
if (csv_out.is_open())
{
csv_out << "x_ref" << delimiter << "y_ref" << delimiter << "z_ref" << delimiter << "x_tar" << delimiter << "y_tar" << delimiter << "z_tar" << endl;
for (int i = 0; i < kp_amount; i++)
{
csv_out << sift->ref_matched_kp[i] << delimiter << sift->tar_matched_kp[i] << endl;
}
}
csv_out.close();
//get the time of start
timer_tic = omp_get_wtime();
//FeatureAffine for deformation estimation according to matched feature pairs
FeatureAffine3D* feature_affine = new FeatureAffine3D(subset_radius_x, subset_radius_y, subset_radius_z, cpu_thread_number);
feature_affine->setKeypointPair(sift->ref_matched_kp, sift->tar_matched_kp);
feature_affine->prepare();
feature_affine->compute(poi_queue);
//get the time of end
timer_toc = omp_get_wtime();
consumed_time = timer_toc - timer_tic;
computation_time.push_back(consumed_time); //2
//display the time of processing on screen
cout << "SIFT feature guided deformation estimation takes " << consumed_time << " sec." << std::endl;
//get the time of start
timer_tic = omp_get_wtime();
//ICGN with the 1st order shape function
ICGN3D1* icgn1 = new ICGN3D1(subset_radius_x, subset_radius_y, subset_radius_z, max_deformation_norm, max_iteration, cpu_thread_number);
icgn1->setImages(ref_img, tar_img);
icgn1->prepare();
icgn1->compute(poi_queue);
//get the time of end
timer_toc = omp_get_wtime();
consumed_time = timer_toc - timer_tic;
computation_time.push_back(consumed_time); //3
//display the time of processing on screen
cout << "Deformation determination using ICGN takes " << consumed_time << " sec." << std::endl;
//save the calculated results
file_path = tar_image_path.substr(0, tar_image_path.find_last_of(".")) + "_sift_icgn1_r16.csv";
in_out.setPath(file_path);
in_out.saveTable3D(poi_queue);
//save the computation time
file_path = tar_image_path.substr(0, tar_image_path.find_last_of(".")) + "_sift_icgn1_r16_time.csv";
csv_out.open(file_path);
if (csv_out.is_open())
{
csv_out << "POI number" << delimiter << "Initialization" << delimiter << "SIFT" << delimiter << "FeatureAffine" << delimiter << "ICGN" << endl;
csv_out << poi_queue.size() << delimiter << computation_time[0] << delimiter << computation_time[1] << delimiter << computation_time[2] << delimiter << computation_time[3] << endl;
}
csv_out.close();
//destroy the instances
delete sift;
delete feature_affine;
delete icgn1;
cout << "Press any key to exit..." << std::endl;
cin.get();
return 0;
}